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Abstract. We construct the moduli stack of torsors over the formal punc-
tured disk in characteristic p > 0 for a �nite group isomorphic to the semidirect
product of a p-group and a tame cyclic group. We prove that the stack is a
limit of separated Deligne-Mumford stacks with �nite and universally injective
transition maps.

Introduction

The main subject of this paper is the moduli space of formal torsors, that is, G-
torsors (also called principal G-bundles) over the formal punctured disk Spec k((t))
for a given �nite group (or étale �nite group scheme) G and �eld k. More pre-
cisely, we are interested in a space over a �eld k whose k-points are G-torsors
over Spec k((t)). Since torsors may have non-trivial automorphisms, this space
should actually be a stack in groupoids and it should not be confused with BG =
[Spec k((t))/G], which is a stack de�ned over k((t)).

The case where the characteristic of k and the order of G are coprime is called
tame and the other case is called wild. The two cases are strikingly di�erent: in the
tame case the moduli space is expected to be zero-dimensional, while in the wild
case it is expected to be in�nite-dimensional.

An important work on this subject is Harbater's one [Har80]. He constructed
the coarse moduli space for pointed formal torsors when k is an algebraically closed
�eld of characteristic p > 0 and G is a p-group. This coarse moduli space is
isomorphic to the inductive limit lim−→n

An of a�ne spaces such that the transition
map An → An+1 is the composition of the closed embedding An ↪→ An+1 and
the Frobenius map of An+1. In particular it is neither a scheme nor an algebraic
space, but an ind-scheme. Some of the di�erences between Harbater's space and
our space are explained in Remark 4.26. As a consequence Harbater shows that
there is a bijective correspondence between G-torsors over the a�ne line A1 and
over Spec k((t)). In this direction an important development has been given by
Gabber and Katz in [Kat86]. Later Pries [Pri02] and Obus-Pries [OP10] constructed
moduli/parameter spaces for groups Z/po C and Z/pm o C with C a tame cyclic
group respectively and Fried-Mezard [FM02] constructed a parameter space of (not
necessarily Galois) covers of Spec k((t)) with given rami�cation data; all these works
assumed k to be algebraically closed.

In recent works [Yas14, Yas17] of the second named author, an unexpected rela-
tion of this moduli space to singularities of algebraic varieties was discovered. He has
formulated a conjectural generalization of the motivic McKay correspondence by
Batyrev [Bat99] and Denef-Loeser [DL02] to arbitrary characteristics, which relates
a motivic integral over the moduli space of formal torsors with a stringy invariant
of wild quotient singularities. The motivic integral can be viewed as the motivic
counterpart of mass formulas for local Galois representations, see [WY15, WY17].
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The �rst and largest problem for other groups is the construction of the moduli
space. From the arithmetic viewpoint, the case where k is �nite is the most in-
teresting, which motivates us to remove the �algebraically closed� assumption in
earlier works.

The main result of this paper is to construct the moduli stack of formal torsors
and to show that it is a limit of Deligne-Mumford stacks (DM stacks for short)
when k is an arbitrary �eld of characteristic p > 0 and G is an étale group scheme
over k which is geometrically the semidirect product H o C of a p-group H and
a cyclic group C of order coprime with p. This is an important step towards the
general case, because, if k is algebraically closed, then connected G-torsors over
Spec k((t)) (or equivalently Galois extensions of k((t)) with group G) exist only for
semidirect products as before. Moreover any G′-torsor for a general G′ is induced
by some connected G-torsor along an embedding G ↪→ G′.

To give the precise statement of the result, we introduce the following notation.
We denote by ∆G the category �bered in groupoids over the category of a�ne k-
schemes such that for a k-algebra B, ∆G(SpecB) is the category of G-torsors over
SpecB((t)). The following is the precise statement of the main result:

Theorem A. Let k be a �eld of positive characteristic p and G be a �nite and étale
group scheme over k such that G×k k is a semidirect product H o C of a p-group
H and a cyclic group C of rank coprime with p.

1) Then there exists a direct system X∗ of separated DM stacks with �nite and
universally injective transition maps, with a direct system of �nite and étale
atlases (see 3.1 for the de�nition) Xn −→ Xn from a�ne schemes and with
an isomorphism lim−→n

Xn ' ∆G.

2) If G is a constant p-group then the stacks Xn can be chosen to be smooth and
integral. More precisely there is a strictly increasing sequence v : N −→ N
such that Xn = Avn , the maps Avn −→ Xn are �nite and étale of degree
]G and the transition maps Avn −→ Avn+1 are composition of the inclusion
Avn −→ Avn+1 and the Frobenius Avn+1 −→ Avn+1 .

3) If G is an abelian constant group of order pr then we also have an equiva-
lence (

lim−→
n

Avn
)
× BG ' ∆G

and the map from lim−→n
Avn to the sheaf of isomorphism classes of ∆G, which

is nothing but the rigidi�cation ∆G(((G (see Appendix B), is an isomorphism.

As a consequence of assertion 1) of this theorem (and A.5) the �bered category
∆G is a stack.

We now explain the outline of our construction. We �rst consider the case of
a constant group scheme of order pr. Following Harbater's strategy, we prove the
theorem in this case by induction. We obtain the explicit description of ∆G as in
assertion 3) when G = Z/pZ by the Artin-Schreier theory (Theorem 4.13); this is
one of the two base cases. It is not di�cult to generalize it to the case G ' (Z/pZ)n

(Lemma 4.20), which forms the initial step of induction. Since a general p-group
has a central subgroup H ⊂ G isomorphic to (Z/pZ)n, we have a natural map
∆G −→ ∆G/H , enabling the induction to work. We then use the fact (Proposition
4.22) that this map factors into the rigidi�cation ∆G −→ ∆G(((H and an XH -torsor
∆G(((H −→ ∆G/H with XH = ∆H(((H, to construct a direct system for ∆G from
one for ∆G/H .

Next we consider the other base case, the case of the group scheme µn of n-th
roots of unity with n coprime to p. In this case, we have the following explicit
description of ∆G, including also the case of characteristic zero:
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Theorem B. Let k be a �eld and n ∈ N such that n ∈ k∗. We have an equivalence

n−1⊔
q=0

B(µn) −→ ∆µn

where the map B(µn) −→ ∆µn in the index q maps the trivial µn-torsor to the

µn-torsor
k((t))[Y ]
(Y n−tq) ∈ ∆µn(k).

When G is a constant group of the form H o C and k contains all n-th roots
of unity, then C ' µn and there exists a map ∆G −→ ∆µn . Using Theorem A for
p-groups, we show that the �ber products ∆G ×∆µn

Spec k with respect to n maps
Spec k → ∆µn induced from the equivalence in Theorem B are limits of DM stacks.
Finally, to conclude that ∆G itself is a limit of DM stacks and also to reduce the
problem to the case of a constant group, we need a proposition (Proposition 3.5)
roughly saying that if Y is a G-torsor over a stack X for a constant group G and
Y is a limit of DM stacks, then X is also a limit of DM stacks. This innocent-
looking proposition turns out to be rather hard to prove and we will make full use
of 2-categories.

The moduli stack of formal torsors introduced in this paper is used in [TY19] to
construct a moduli space in a weaker sense for general �nite étale group schemes
and in [Yas] to develop the motivic integration over wild DM stacks. Moreover it
is showed in [TY19] that the motivic integral in the conjecture mentioned above
on the McKay correspondence makes rigorous sense and this conjecture is �nally
proved in [Yas]. According to discussion and observation in [TY], it appears quite
meaningful to generalize the McKay correspondence further to nonreduced �nite
group schemes. For this reason, the moduli problem of formal torsors for such group
schemes would be important as a future study.

Notice that points of ∆G over a �eld L, namely G-torsors over L((t)), can also be
seen as (not necessarily connected) Galois extensions of L((t)) and, taking integers,
as special covers of L[[t]] with an action of G. It is therefore natural to ask and
indeed this has been our initial approach to the problem, if one can de�ne a moduli
space of special G-covers of B[[t]] for varying B or, more precisely, give a di�erent
moduli interpretation of G-torsors of B((t)) in terms of covers of B[[t]], in the spirit
of [Ton17] and [Ton14]. We don't have a precise answer to this question, but in
[TY19, Yas] we give partial answers.

The paper is organized as follows. In Section 1 we set up notation and termi-
nology frequently used in the paper. In Section 2 we collect basic results on power
series rings, �nite and universally injective morphisms and torsors. In Section 3,
after introducing a few notions and proving a few easy results, the rest of the sec-
tion is devoted to the proof of the proposition mentioned above (Proposition 3.5).
Section 4 is the main body of the paper, where we prove Theorems A and B. The
proof of Theorem B is given on page 22, the one of Theorem A, 2) and 3) is given
on page 26 and the one of Theorem A, 1) is given on page 30. Lastly we include two
Appendices about limits of �bered categories, implicitly used in Theorem A, and
rigidi�cation, an operation introduced in [AOV08] for algebraic stacks and that we
extends to more general stacks.
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1. Notation and terminology

Given a ring B we denote by B((t)) the ring of Laurent series
∑∞
i=r bit

i with
bi ∈ B and r ∈ Z, that is, the localization B[[t]]t = B[[t]][t−1] of the formal power
series ring B[[t]] with coe�cients in B. This should not be confused with the
fraction �eld of B[[t]] (when B is a domain).

By a �bered category over a ring B we always mean a category �bered in
groupoids over the category A� /B of a�ne B-schemes.

Recall that a �nite map between �bered categories is by de�nition a�ne and
therefore represented by �nite maps of algebraic spaces.

By a vector bundle on a scheme X we always mean a locally free sheaf of �-
nite rank. A vector bundle on a ring B is a vector bundle on SpecB or, before
shea��cation, a projective B-module of �nite type.

If C is a category, X : C −→ (groups) is a functor of groups and S is a set we
denote by X(S) : C −→ (groups) the functor so de�ned: if c ∈ C then X(S)(c) is the
set of functions u : S −→ X(c) such that {s ∈ S | u(s) 6= 1X(c)} is �nite.

We recall that for a morphism f : X → Y of �bered categories over a ring B, f is
faithful (resp. fully faithful, an equivalence) if and only if for every a�ne B-scheme
U , fU : X (U)→ Y(U) is so (see [Sta17, 003Z]). A morphism of �bered categories is
called a monomorphism if it is fully faithful. We also note that every representable
(by algebraic spaces) morphism of stacks is faithful ([Sta17, 02ZY]).

A map f : Y −→ X between �bered categories over A� /k is a torsor under a
sheaf of groups G over A� /k if it is given a 2-Cartesian diagram

Y Spec k

X BG

By a stack we mean a stack over the category A� of a�ne schemes with respect
to the fppf topology, unless a di�erent site is speci�ed.

We often abbreviate �Deligne-Mumford stack� to �DM stack�.

2. Preliminaries

In this section we collect some general results that will be used later.

2.1. Some results on power series.

Lemma 2.1. Let C be a ring, J ⊆ C be an ideal and assume that C is J-adically
complete. If U ⊆ SpecC is an open subset containing Spec(C/J) then U = SpecC.

Proof. Let U = SpecC−V (I), where I ⊆ C is an ideal. The condition Spec(C/J) ⊆
U means that I + J = C. In particular there exists g ∈ I and j ∈ J such that
g = 1 + j. Since j is nilpotent in all the rings C/Jn we see that g is invertible in
all the rings C/Jn, which easily implies that g is invertible in C. Thus I = C. �

Lemma 2.2. Let R be a ring, X be a quasi-a�ne scheme formally étale over R,
C be an R-algebra and J be an ideal such that C is J-adically complete. Then the
projection C −→ C/Jn induces a bijection

X(C) −→ X(C/Jn) for all n ∈ N

http://stacks.math.columbia.edu/tag/003Z
http://stacks.math.columbia.edu/tag/02ZY
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Proof. Since X is formally étale the projections C/Jm −→ C/Jn for m ≥ n induce
bijections

X(C/Jm) −→ X(C/Jn)

Thus it is enough to prove that if Y is any quasi-a�ne scheme over R then the
natural map

αY : Y (C) −→ lim←−
n∈N

Y (C/Jn)

is bijective. This is clear when Y is a�ne. Let B = H0(OY ), so that Y is a
quasi-compact open subset of U = SpecB. The fact that αU is an isomorphism
tells us that αY is injective. To see that it is surjective we have to show that if
B −→ C is a map such that all SpecC/Jn −→ SpecB factors through Y then
also φ : SpecC −→ SpecB factors through Y . But the �rst condition implies that
φ−1(Y ) is an open subset of SpecC containing SpecC/J . The equality φ−1(Y ) =
SpecC then follows from 2.1. �

Corollary 2.3. Let B be a ring, f : Y −→ SpecB[[t]] an étale map, ξ : SpecL −→
SpecB a geometric point and assume that the geometric point SpecL −→ SpecB −→
SpecB[[t]] is in the image on f . Then there exists an étale neighborhood SpecB′ −→
SpecB of ξ such that SpecB′[[t]] −→ SpecB[[t]] factors through Y −→ SpecB[[t]].

Proof. We can assume Y a�ne, say Y = SpecC. Set B′ = C/tC, so that the
induced map f0 : Y0 = SpecB′ −→ SpecB is étale. By hypothesis the geometric
point SpecL −→ SpecB is in the image of f0 and therefore factors through f0.
Moreover the map Y0 −→ Y gives an element of Y (B′) which, by 2.2, lifts to an
element of Y (B′[[t]]), that is a factorization of SpecB′[[t]] −→ SpecB[[t]] through
Y −→ SpecB[[t]]. �

Lemma 2.4. Let R be a ring, S be an R-algebra and consider the map

ωS/R : R[[t]]⊗R S → S[[t]]

The image of ωS/R is the subring of S[[t]] of series
∑
snt

n such that there exists a
�nitely generated R submodule M ⊆ S with sn ∈M for all n ∈ N.

If any �nitely generated R submodule of S is contained in a �nitely presented R
submodule of S then ωS/R is injective.

Proof. The claim about the image of ωS/R is easy.
Given an R-module M we de�ne M [[t]] as the R-module MN. Its elements are

thought of as series
∑
nmnt

n and M [[t]] has a natural structure of R[[t]]-module.
This association extends to a functor ModA → ModA[[t]] which is easily seen to
be exact. Moreover there is a natural map

ωM/R : R[[t]]⊗RM →M [[t]]

Since both functors are right exact and ωM/R is an isomorphism if M is a free
R-module of �nite rank, we can conclude that ωM/R is an isomorphism if M is a
�nitely presented R-module. Let P be the set of �nitely presented R submodules
of S. By hypothesis this is a �ltered set. Passing to the limit we see that the map

ωS/R : R[[t]]⊗R S ' lim−→
M∈P

(R[[t]]⊗RM) −→ lim−→
M∈P

M [[t]] =
⋃
M∈P

M [[t]] ⊆ S[[t]]

is injective. �

Lemma 2.5. Let N be a �nite set and denote by N : A� /Z −→ (Sets) the associ-
ated constant sheaf. Then the maps

N(B) −→ N(B[[t]]) −→ N(B((t)))
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are bijective. In other words if B is a ring and B((t)) ' C1 × · · · × Cl (resp.
B[[t]] = C1×· · ·×Cl) then B ' B1×· · ·×Bl and Cj = Bj((t)) (resp. Cj = Bj [[t]]).

Proof. Notice that N is an a�ne scheme étale over SpecZ. Since A = B[[t]] is t-
adically complete we obtain that N(B[[t]]) −→ N(B[[t]]/tB[[t]]) is bijective thanks
to 2.2. Since B −→ B[[t]]/tB[[t]] is an isomorphism we can conclude that N(B) −→
N(B[[t]]) is bijective.

Let n be the cardinality of N and C be a ring. An element of N(C) is a
decomposition of SpecC into n-disjoint open and closed subsets. In particular if
n = 2 then N(C) is the set of open and closed subsets of SpecC. Taking this into
account it is easy to reduce the problem to the case n = 2. In this case another way
to describe N is N = SpecZ[x]/(x2 − x), so that N(C) can be identi�ed with the
set of idempotents of C. Consider the map αB : N(B[[t]]) −→ N(B((t))), which is
injective since B[[t]] −→ B((t)) is so. If, by contradiction, αB is not surjective, we
can de�ne k > 0 as the minimum positive number for which there exist a ring B
and a ∈ B[[t]] such that a/tk ∈ N(B((t))) and a/tk /∈ B[[t]]. Let B, a as before and
set a0 = a(0). It is easy to check that a2

0 = 0 in B. Set C = B/〈a0〉. By 2.4 we
have that B[[t]]/a0B[[t]] = C[[t]] and that B((t))/a0B((t)) = C((t)). Thus we have
a commutative diagram

N(B[[t]]) N(B((t)))

N(C[[t]]) N(C((t)))

αB

β

αC

in which the vertical maps are bijective, since the topological space of a spectrum
does not change modding out by a nilpotent. By construction β(a/tk) = a′/tk−1

where a′ = (a − a0)/t. By minimality of k we must have that a′/tk−1 ∈ C[[t]].
Since the vertical maps in the above diagram are bijective we can conclude that
also a/tk ∈ B[[t]], a contradiction. �

Lemma 2.6. Let M,N be vector bundles on B((t)). Then the functor

HomB((t))(M,N) : A� /B −→ (Sets), C 7−→ HomC((t))(M ⊗ C((t)), N ⊗ C((t)))

is a sheaf in the fpqc topology.

Proof. Set H = HomB((t))(M,N), which is a vector bundle over B((t)). Moreover
if C is a B-algebra we have H ⊗B((t)) C((t)) ' HomB((t))(M,N)(C) because M
and N are vector bundles. By A.4 we have to prove descent on coverings indexed
by a �nite set and, by 2.5, it is enough to consider a faithfully �at map B −→ C. If
i1, i2 : C −→ C ⊗B C are the two inclusions, descent corresponds to the exactness
of the sequence

0 −→ H −→ C((t))⊗H (i1−i2)⊗idH−−−−−−−−→ (C ⊗B C)((t))⊗H
Since this sequence is obtained applying ⊗B((t))H to the exact sequence 0 −→
B((t)) −→ C((t))

i1−i2−−−−→ (C ⊗B C)((t)) and H is �at we get the result. �

2.2. Finite and universally injective morphisms.

De�nition 2.7. A map X −→ Y between algebraic stacks is universally injective
(resp. universally bijective, a universal homeomorphism) if for all maps Y ′ −→ Y
from an algebraic stack the map |X ×YY ′| −→ |Y ′| on topological spaces is injective
(resp. bijective, an homeomorphism).
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Remark 2.8. In order to show that a map X −→ Y is universally injective (resp.
universally bijective, a universal homeomorphism) it is enough to test on maps
Y ′ −→ Y where Y ′ is an a�ne scheme. Indeed injectivity and surjectivity can
be tested on the geometric �bers. Moreover if

⊔
i Yi −→ Y is a smooth surjective

map and the Yi are a�ne then |X | −→ |Y| is open if |X ×Y Yi| −→ |Yi| is open
for all i. In particular if X −→ Y is representable then it is universally injective
(resp. bijective, a universal homeomorphism) if and only if it is represented by
map of algebraic spaces which are universally injective (resp. universally bijective,
universal homeomorphisms) in the usual sense.

Proposition 2.9. Let f : X −→ Y be a map of algebraic stacks. Then f is �nite
and universally injective if and only if it is a composition of a �nite universal
homeomorphism and a closed immersion. More precisely, if I = Ker(OY −→
f∗OX ), then X −→ Spec(OY/I) is �nite and a universal homeomorphism.

Proof. The if part in the statement is clear. So assume that f is �nite and univer-
sally injective and consider the factorization X g−−→ Z = Spec(OY/I)

h−−→ Y. Since
f is �nite, the map g is �nite and surjective. Since h is a monomorphism, given a
map U −→ Z from a scheme we have that X ×Z U −→ X ×Y U is an isomorphism,
which implies that g is also universally injective as required. �

Remark 2.10. The following properties of morphisms of schemes are stable by base
change and fpqc local on the base: �nite, closed immersion, universally injective,
surjective and universal homeomorphism (see [Sta17, 02WE]). In particular for
representable maps of algebraic stacks those properties can be checked on an atlas.

Remark 2.11. Let f : S ′ −→ S be a map of algebraic stacks, U ,V and U ′,V ′ alge-
braic stacks with a map to S and S ′ respectively and u : U ′ −→ U , v : V ′ −→ V be
S-maps. If f, u, v are �nite and universally injective then so is the induced map
U ′ ×S′ V ′ −→ U ×S V. The map (U ×S ×V) ×S S ′ −→ U ×S V is �nite and uni-
versally injective. The map U ′ −→ U ×S S ′ is also �nite and universally injective
because U ×S S ′ −→ U and U ′ −→ U are so (use [Sta17, 01S4] for the universal
injectivity). Thus we can assume S = S ′ and f = id. In this case it is enough to
use the factorization U ′ ×S V ′ −→ U ×S V ′ −→ U ×S V.

2.3. Some results on torsors. In what follows, actions of groups (or sheaves of
groups) are supposed to be right actions. Recall that for a sheaf G of groups on
a site C, BG denotes the category of G-torsors over objects of C, and that given a
map G → H of sheaves of groups, then there exists a functor BG → BH sending a
G-torsor P to the H-torsor (P ×H)/G.

Lemma 2.12. Let G be a sheaf of groups on a site C and H be a sheaf of subgroups
of the center Z(G). Then H is normal in G, the map µ : G ×H −→ G restriction of
the multiplication is a morphism of groups and the �rst diagram

B(G ×H) B(G) G ×H G

B(G) B(G/H) G G/H

pr1

µ

induced by the second one is 2-Cartesian. A quasi-inverse B(G)×B(G/H) B(G) −→
B(G×H) = B(G)×B(H) is obtained as follows: given (P,Q, λ) ∈ B(G)×B(G/H)B(G)
(so that λ : P/H −→ Q/H is a G/H-equivariant isomorphism) we associate (P, Iλ),

where Iλ is the �ber of λ along the map IsoG(P,Q) −→ IsoG/H(P/H,Q/H) and
the action of H is given by H −→ G −→ Aut(Q).

http://stacks.math.columbia.edu/tag/02WE
http://stacks.math.columbia.edu/tag/01S4
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Proof. Let (P,Q, λ) ∈ B(G) ×B(G/H) B(G) over an object c ∈ C. The composition
H −→ G −→ Aut(Q) has image in AutG(Q) because H is central. Moreover the
map IsoG(P,Q) −→ IsoG/H(P/H,Q/H) is H-equivariant. It is also an H-torsor:
locally when P and Q are isomorphic to G, the previous map become G −→ G/H.
Thus Iλ is an H-torsor over c ∈ C. Thus we have two well de�ned functors

Λ: B(G)×B(G/H)B(G) −→ B(G)×B(H) and ∆: B(G)×B(H) −→ B(G)×B(G/H)B(G)

and we must show they are quasi-inverses of each other. Let's consider the com-
position Λ ◦ ∆ and (P, E) ∈ B(G) × B(H) over c ∈ C. We have ∆(P, E) =
(P, (P × E × G)/G ×H, λ) where λ is the inverse of

[(P × E × G)/G ×H]/H −→ P/H, (p, e, 1) −→ p

We have to give an H-equivariant map E −→ Iλ. Given a global section e ∈ E ,
that is a map H −→ E , we get a G × H equivariant morphism P × H −→ P × E
and thus a G-equivariant morphism

δ : P −→ (P ×H× G)/G ×H −→ (P × E × G)/G ×H

which is easily seen to induce λ. Mapping e to δ gives anH-equivariant map E → Iλ.
There are several conditions that must be checked but they are all elementary and
left to the reader.

Now consider ∆ ◦Λ and (P,Q, λ) ∈ B(G)×B(G/H) B(G) over an object c ∈ C. It
is easy to see that

(P × Iλ × G)/G ×H −→ Q, (p, φ, g) 7→ φ(p)g

is a G-equivariant morphism and it induces a morphism ∆◦Λ(P,Q, λ) −→ (P,Q, λ).
�

Remark 2.13. If X −→ Y is integral (e.g. �nite) and a universal homeomorphism
of schemes and G is an étale group scheme over a �eld k then BG(Y ) −→ BG(X)
is an equivalence. Indeed by [AGV64, Expose VIII, Theorem 1.1] the �ber prod-
uct induces an equivalence between the category of schemes étale over Y and the
category of schemes étale over X.

Lemma 2.14. Let G be a �nite group scheme over k of rank rkG, U −→ G a
�nite, �at and �nitely presented map of degree rkG and G −→ T be a map locally
equivalent to BG, where U , G and T are categories �bered in groupoids. If U −→ T
is faithful then it is an equivalence.

Proof. By changing the base T we can assume that T is a scheme, G = BG × T
and U is an algebraic space. We must prove that if P −→ U is a G-torsor and
P −→ U −→ T is a cover of degree rkG then f : U −→ T is an isomorphism.
It follows that f : U −→ T is �at, �nitely presented and quasi-�nite. Moreover
f : U −→ BG× T −→ T is proper. We can conclude that f : U −→ T is �nite and
�at. Looking at the ranks of the involved maps we see that f must have rank 1. �

3. Direct system of Deligne-Mumford stacks

In this section we discuss some general facts about direct limits of DM stacks.
For the general notion of limit see Appendix A. By a direct system in this section
we always mean a direct system indexed by N.

De�nition 3.1. Let X be a category �bered in groupoid over Z. A coarse ind-
algebraic space for X is a map X −→ X to an ind-algebraic space X which is
universal among maps from X to an ind-algebraic space and such that, for all
algebraically closed �eld K, the map X (K)/ '−→ X(K) is bijective.
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Lemma 3.2. Let Z∗ be a direct system of quasi-compact and quasi-separated al-
gebraic stacks admitting coarse moduli spaces Zn −→ Zn. Then the limit of those
maps ∆ −→ ∆ is a coarse ind-algebraic space.

Assume moreover that the transition maps of Z∗ are �nite and universally in-
jective. Then for all n ∈ N and all reduced rings B the functors Zn(B) −→
Zn+1(B) −→ ∆(B) are fully faithful. In particular the maps Zn −→ Zn+1 are
universally injective and, if all Zm are DM, Zn −→ ∆ preserves the geometric
stabilizers.

Proof. The �rst claim follows easily taking into account that, since Zn is quasi-
compact and quasi-separated, a functor from Zn to an ind-algebraic space factors
through an algebraic space and therefore uniquely through Zn. It is also easy to
reduce the second claim to the case of some Zn.

Denote by ψ : Zn −→ Zn+1 the transition map. Let ξ, η ∈ Zn(B) and a : ψ(ξ) −→
ψ(η). Set ψ(η) = ζ ∈ Zn+1(B). If W is the base change of Zn −→ Zn+1 along

SpecB
ζ−−→ Zn+1 then ξ = (ξ, ζ, a), η = (η, ζ, id) ∈ W (B). A lifting of a to an

isomorphism ξ −→ η is exactly an isomorphism ξ −→ η. Such an isomorphism
exists and it is unique because, since W −→ SpecB is an homeomorphism and B
is reduced it has at most one section.

Applying the above property when B is an algebraically closed �eld we conclude
that Zn −→ Zn+1 is universally injective. If all Zm are DM then the geomet-
ric stabilizers are constant. Since for all algebraically closed �eld K the functor
Zn(K) −→ Zn+1(K) is fully faithful we see that Zn −→ Zn+1 is an isomorphism
on geometric stabilizers. �

De�nition 3.3. Given a direct system of stacks Y∗, a direct system of smooth
(resp. étale) atlases for Y∗ is a direct system of algebraic spaces U∗ together with
smooth (resp. étale) atlases Ui −→ Yi and 2-Cartesian diagrams

Ui Ui+1

Yi Yi+1

for all i ∈ N.

Lemma 3.4. Let Y∗ be a direct system of stacks and X be a quasi-compact and
quasi-separated algebraic stack. Then the functor

lim−→
n

Hom(X ,Yn) −→ Hom(X , lim−→
n

Y)

is an equivalence of categories. If the transition maps of Y∗ are faithful (resp. fully
faithful) so are the transition maps in the above limit.

Proof. Denotes by ζX the functor in the statement. When X is an a�ne scheme ζX
is an equivalence thanks to A.5. In general there is a smooth atlas U −→ X from
an a�ne scheme. It is easy to see that the functor ζX is faithful. If two morphisms
become equal in the limit it is enough to pullback to U and get a �nite index for
ζU . By descent this index will work in general.

The next step is to look at the case when X is a quasi-compact scheme. Using the
faithfulness just proved and taking a Zariski covering of X (here one uses that the
intersection of two open quasi-compact subschemes of X is again quasi-compact)
one proves that ζX is an equivalence.

Finally using that ζU , ζU×XU and ζU×XU×XU are equivalences and using descent
one get that ζX is an equivalence. The last statement can be proved directly. �
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Proposition 3.5. Consider a 2-Cartesian diagram

Y Spec k

X BG

F

where G is a �nite group and X is a stack over A� /k. Suppose that there exists a
direct system Y∗ of DM stacks of �nite type over k with �nite and universally injec-
tive transition maps, a�ne diagonal, with a direct system of étale atlases Yn −→ Yn
from a�ne schemes and with an isomorphism lim−→n

Yn ' Y. Then there exists a di-

rect system of DM stacks X∗ of �nite type over k with �nite and universally injective
transition maps, a�ne diagonal, with a direct system of étale atlases Xn −→ Xn
from a�ne schemes and with an isomorphism lim−→n

Xn ' X . If all the stacks in

Y∗ are separated then the stacks X∗ can also be chosen separated. If Yn −→ Yn is
�nite and étale then Xn −→ Xn can also be chosen �nite and étale.

The remaining part of this section is devoted to the proof of the above Propo-
sition. Its outline is as follows. For some data ω, we de�ne a stack Xω, and for a
suitable sequence ωu, u ∈ N of such data, we will prove that the sequence

Xω0 → Xω1 → · · ·

has the desired property. To do this, we reduce the problem to proving a similar
property for the induced sequence Zωu ∼= Xωu ×X Y, u ∈ N. Then we describe Zω
using �ber products of simple stacks. Once these are done, it is straightforward to
see the desired properties of Zωu , u ∈ N.

We recall that stacks and more generally categories �bered in groupoids form 2-
categories; 1-morphisms are base preserving functors between them and 2-morphisms
are base preserving natural isomorphisms between functors. In a diagram of stacks,
1-morphisms (functors) are written as normal thin arrows and 2-morphisms as thick
arrows. For instance, in the diagram of categories �bered in groupoids

A
f //

h
��

B

g

��λz�
C

i
// D

A,B,C and D are categories �bered in groupoids, f , g, h and i are functors and λ
is a natural isomorphism g ◦ f → i ◦ h. We will also say that λ makes the diagram
2-commutative. For a diagram including several 2-morphisms such as

A
f //

i

��

B

λ

z�

g //

��

C

λ′

{�
h
��

D
j
// E

k
// F

the induced natural isomorphism means that the induced natural isomorphism of
the two outer paths from the upper left to the bottom right; concretely, in the
above diagram, it is the natural isomorphism h ◦ g ◦ f → k ◦ j ◦ i induced by λ and
λ′.

Let us denote the functor X −→ BG in 3.5 by Q. An object of Y over T ∈ A� /k
is identi�ed with a pair (ξ, c) such that ξ ∈ X (T ) and c is a section of the G-
torsor Q(ξ) −→ T , in other words c ∈ Q(ξ)(T ). For each g ∈ G, we de�ne an
automorphism ιg : Y → Y sending (x, c) to (x, cg). By construction we have ι1 = id
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and ιg ◦ ιh = ιhg and we interpret those maps as a map ι : Y × G −→ Y. For all
ξ ∈ X the map ι induces the action of G on Q(ξ).

De�nition 3.6. We de�ne a category �bered in groupoids X̃ as follows. An object
of X̃ over a scheme T is a tuple (P, η, µ) where P is a G-torsor over T ∈ A� /k
with a G-action mP : P × G → P , η : P → Y is a morphism and µ is a natural
isomorphism

(3.1) P ×G mP //

η×idG
��

P
µ

x�
η

��
Y ×G

ι
// Y

such that if µg denotes the natural isomorphism induced from µ by composing
P ' P × {g} ↪→ P ×G and mg : P → P denotes the action of g, then the diagram

(3.2) P
mh //

η

��

P
µh

{�

mg //

η

��

P
µg

{�
η

��
Y

ιh
// Y

ιg
// Y

induces µhg. A morphism (P, η, µ) → (P ′, η′, µ′) over T is a pair (α, β) where
α : P → P ′ is a G-equivariant isomorphism over T and β is a natural isomorphism

P
α //

η
��

P ′

η′~~

3;
β

Y
such that the diagram

(3.3) P ×G

η×id

��

//

α×id

%%

id

w�

P

α��
η

��

P ′ ×G
β−1×id

ks //

η′×idyy

P ′

η′ ��

µ′

w�

β
ks

Y ×G
ι

// Y

induces µ.

There is a functor X −→ X̃ : given ξ ∈ X (T ) one gets a G-torsor Q(ξ) → T
and a morphism η : Q(ξ) → Y and using the Cartesian diagram relating X and Y
we also get a natural transformation as above. The following is a generalization of
[Rom05, Theorem 4.1] for stacks without geometric properties.

Lemma 3.7. The functor X −→ X̃ is an equivalence.

Proof. The forgetful functor X̃ −→ BG composed with the functor in the statement
is Q : X −→ BG. Since X and X̃ are stacks, it is enough to show that the functor
Ξ: Y −→ Ỹ = X̃ ×BG Spec k is an equivalence.

An object of the stack Ỹ can be regarded as a pair (η, µ) such that η : T ×G→ Y
is a morphism and µ is a natural isomorphism as in (3.1) with mP : P × G → P
replaced with idT × mG : T × G × G → T × G, where mG is the multiplication
of G. A morphism (η, µ) → (η′, µ′) in Ỹ(T ) is a natural isomorphism β : η → η′

satisfying the same compatibility as in (3.3) where P and P ′ are replaced with
T × G and α is replaced with idT×G. The functor Ξ sends an object ρ ∈ Y(T )
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to (ρ̃ : T × G → Y, µ) such that ρ̃|T×{g} = ιg ◦ ρ and µ is the canonical natural
isomorphism, and a morphism γ : ρ→ ρ′ to (idT×G, γ̃) where γ̃|T×{g} = ιg(γ). One
also gets a functor Λ: Ỹ −→ Y by composing with the identity of G and it is easy
to see that Λ ◦ Ξ = id. The compatibilities de�ning the objects of Ỹ also allow to
de�ne an isomorphism Ξ ◦ Λ ' id. �

Set δu : Yu −→ Y for the structure maps and δu,v : Yu −→ Yv for the transition
maps for all u ≤ v ∈ N. Given w ≥ v ≥ u ∈ N we denote by R(u, v, w) the
collection of tuples (ω, ω′, θ, θ′) forming 2-commutative diagrams:

(3.4) Yu ×G
ω //

δu×id
��

Yv
δv

��

θ

w�
Y ×G

ι
// Y

(3.5) Yv ×G
ω′ //

δv×id
��

Yw
δw

��

θ′

w�
Y ×G

ι
// Y

We also require the existence of a natural isomorphism

(3.6) Yu ×G
ω //

δu,v×id
��

Yv
δv,w

��

ζ

w�
Yv ×G

ω′
// Yw

compatible with θ and θ′ and, for g, h ∈ G, the existence of a natural isomorphism
λh,g

(3.7) Yu
ωh //

ωhg

��

Yv
ω′g
��

λh,g

y�
Yv

δv,w

// Yw

such that the natural isomorphism induced by

(3.8) Yu
ωh

&&

δu

��

δv,w(ωhg) //

λ−1
h,g

��

Yw

δw

��

Yv
θh

t|

ω′g

77

δv

��

θ′g

s{Y

ιg
''

id

��Y
ιh

77

ιhg
// Y

coincides with the one induced by θhg and δv,w. Since the transition maps of Y∗ are
faithful, the functor Hom(Yu,Yw) → Hom(Yu,Y) is faithful as well, which means
that natural transformations ζ and λg,h are uniquely determined.
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De�nition 3.8. For ω = (ω, ω′, θ, θ′) ∈ R(u, v, w), we de�ne the following category
�bered in groupoids Xω as follows.

An object of Xω over T is a triple (P, η, µ) of a G-torsor P over T , η : P −→ Yu
and a natural isomorphism µ making the diagram

P ×G mP //

η×id
��

P

δu,v(η)

��

µ

w�
Yu ×G ω

// Yv

2-commutative such that the diagram

(3.9) P
mh //

η

��

P
µh

s{

mg //

δu,v(η)

��

P
δv,w(µg)

s{
δu,w(η)

��

Yv

ω′g ''
λh,g

��Yu

ωh

88

δv,w(ωhg)
// Yw

induces δv,w(µhg).
A morphism (P, η, µ) −→ (P ′, η′, µ′) in Xω(T ) is a pair (α, β) where α : P −→ P ′

is a G-equivariant isomorphism over T and β is a natural isomorphism making the
following diagram 2-commutative

P
α //

η
  

P ′

η′~~

2:
β

Yu

such that the diagram

(3.10) P ×G

η×id

��

//

α×id

%%

id

w�

P

α~~
δu,v(η)

��

P ′ ×G
β−1×id

ks //

η′×idyy

P ′

δu,v(η′)   

µ′

w�

δu,v(β)
ks

Yu ×G ω
// Yv

induces the natural isomorphism µ.

By 3.4 for all algebraic stacks X the functor lim−→w
Hom(X ,Yw)→ Hom(X ,Y) is

an equivalence. This allows us to choose increasing functions v, w : N −→ N such
that u ≤ v(u) ≤ w(u) and ωu = (ωu, ω

′
u, θu, θ

′
u) ∈ R(u, v(u), w(u)), so that Xωu is

de�ned, for all u ∈ N. Moreover we can assume there exist natural isomorphisms κ
and κ′

Yu ×G
ωu //

δu,u+1×id
��

Yv(u)

δv(u),v(u+1)

��

κ

u}
Yu+1 ×G ωu+1

// Yv(u+1)
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Yv(u) ×G
ω′u //

δv(u),v(u+1)×id
��

Yw(u)

δw(u),w(u+1)

��

κ′

t|
Yv(u+1) ×G

ω′u+1

// Yw(u+1)

such that δv(u+1)(κ) is induced from θu and θu+1 and δw(u+1)(κ
′) is induced from

θ′u and θ′u+1. Again, since the transition maps of Y∗ are faithful, natural transfor-
mations κ and κ′ are uniquely determined.

For each u ∈ N, there exist canonical functors Xωu → Xωu+1 and Xωu → X̃ ,
which lead to a functor

lim−→
u

Xωu −→ X̃ .

Proposition 3.9. The functor lim−→u
Xωu −→ X̃ is an equivalence.

Proof. By de�nition, every object and every morphism of X̃ come from ones of
Xωu for some u. Namely the above functor is essentially surjective and full. To see
the faithfulness, we take objects (P, η, µ), (P ′, η′, µ′) of Xωu(T ) and their images

(P, η∞, µ∞), (P, η′∞, µ
′
∞) in X̃ (T ). The map

HomXωu (T )((P, η, µ), (P ′, η′, µ′))→ HomX̃ (T )((P, η∞, µ∞), (P ′, η′∞, µ
′
∞))

is compatible to projections to the set IsoGT (P, P ′) of G-equivariant isomorphisms
over T . The �bers over α ∈ IsoGT (P, P ′) are respectively identi�ed with subsets of
HomYu(P )(η, η

′ ◦ α) and of HomY(P )(η∞, η
′
∞ ◦ α). Since Y(P ) is the limit of the

categories Yu(P ) by 3.4 we get the faithfulness. �

De�nition 3.10. For ω = (ω, ω′, θ, θ′) ∈ R(u, v, w), we de�ne Zω as the stack of
pairs (η, µ) where η : T ×G −→ Yu is a morphism and µ is a natural isomorphism
making the diagram

(3.11) T ×G×G

η×id
��

id×mG// T ×G

δu,v(η)

��

µ

t|
Yu ×G ω

// Yv

2-commutative and such that

(3.12) T ×G id×h //

η

��

T ×G
µh

rz

id×g //

δu,v(η)

��

T ×G
δv,w(µg)

rz
δu,w(η)

��

Yv
ω′g

((
λh,g

��Yu

ωh

66

δv,w(ωhg)
// Yw

induces δv,w(τhg).
A morphism (η, µ)→ (η′, µ′) in Zω is a natural isomorphism β : η → η′,

T ×G

η

''
η′

wwYu

β +3
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such that the diagram

(3.13) T ×G×G

η

%%
η′

yy

id×mG //

µ′

~�

T ×G

δu,v(η′)

''

δu,v(η)

wwYu ×G ω
//

β−1×idks

Yv

δu,v(β)ks

induces the natural isomorphism µ.

Lemma 3.11. There exists a natural equivalence Zω ' Xω ×X Y. Here the mor-
phism Xω −→ X implicit in the �ber product is the composite of the morphism

Xω −→ X̃ and a quasi-inverse X̃ ∼−→ X of the equivalence in 3.7.

Proof. Set Z̃ω = Xω ×X Y. We may identify an object of Z̃ω(T ) with a tu-
ple (P, η, µ, s) such that (P, η, µ) is an object of Xω(T ) and s is a section of
P → T . A morphism (P, η, µ, s) → (P ′, η′, µ′, s′) is identi�ed with a morphism
(α, β) : (P, η, µ) → (P ′, η′, µ′) in Xω satisfying α ◦ s = s′. The section s induces a
G-equivariant isomorphism T × G −→ P . Identifying P with T × G through this
isomorphism, we see that Z̃ω is equivalent to Zω. �

Notice that if U −→ V is aG-torsor then V has a�ne diagonal (resp. is separated)
if and only if U has the same property. The �only if� part is clear. The �if� part
follows because BG is separated, descent and the 2-Cartesian diagrams

U U × U Spec k

V V ×BG V BG

From this remark and from 3.7, 3.9 and 3.11, the proof of 3.5 reduces to:

Lemma 3.12. The stacks Zω∗ form a direct system of DM stacks of �nite type over
k with a�ne diagonal, with �nite and universally injective transition maps, and with
a direct system of étale atlases Z∗ −→ Zω∗ from a�ne schemes. Moreover if all Y∗
are separated so are the Zω∗ and if Yn −→ Yn is �nite and étale then Z∗ −→ Zω∗
can be chosen to be �nite and étale.

To prove this lemma, we will describe Zω by using �ber products of simpler
stacks. In what follows, for a stack K and a �nite set I, we denote by KI the product∏
i∈I K and identify its objects over a scheme T with the morphisms T×I = tiT →
K.

Let Wω be the stack of pairs (η, µ) where η : T × G −→ Yu and µ is a natural
isomorphism as in (3.11), but not necessarily satisfying the compatibility imposed
on objects of Zω.

Remark 3.13. Let F,G : W1 −→ W0 be two maps of stacks and denote by W2 the
stack of pairs (w, ζ) were w ∈ W1(T ) and ζ : G(w) −→ F (w) is an isomorphism in
W0(T ). Then there is a 2-Cartesian diagram

W2 W1

W1 W1 ×W0

p

ΓF

ΓGp

where Γ∗ denotes the graph and p the projection. Notice that the sheaf of iso-
morphisms of an object of a �ber product can be expressed as �ber products of
the sheaves of isomorphisms of its factors. In particular, if W0,W1 have a�ne
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diagonals, then W2 has a�ne diagonal. If W1 has a�ne diagonal and F is a�ne
then p is also a�ne. This is because the graph ΓF can be factors as the diagonal
W1 −→W1 ×W1 followed by id× F : W1 ×W1 −→W1 ×W0.

This remark particularly gives:

Lemma 3.14. Let Φ: YGu → YG×Gv be the morphism sending η : T × G → Yu to
the composition

Φ(η) : T ×G×G id×mG−−−−→ T ×G η−→ Yu
δu,v−−→ Yv

and let Ψ: YGu → YG×Gv be the morphism sending η : T×G→ Yu to the composition

Ψ(η) : T ×G×G η×id−−−→ Yu ×G
ω−→ Yv.

Let ΓΦ,ΓΨ : YGu → YGu × YG×Gv be their respective graph morphisms. Then

Wω ' YGu ×ΓΦ,YGu ×Y
G×G
v ,ΓΨ

YGu .

Let (η, µ) ∈ Wω(T ). In the two diagrams,

(3.14) T ×G×G×GidT×mG×idG //

η

��

T ×G×G
µ×id

px

idT×mG //

δu,v(η)

��

T ×G
δv,w(µ)

qy
δu,w(η)

��
Yu ×G×G

ω×idG
// Yv ×G

ω′
// Yw

and

(3.15) T ×G×G×G
idT×G×mG //

η

��

T ×G×G
canonical

px

idT×mG //

δu,v(η)

��

T ×G
δv,w(µ)

qy
δu,w(η)

��
Yu ×G×G

δu,v×mG
// Yv ×G

ω′
// Yw

the paths from T×G×G×G to Yw through the upper right corner are identical; we
denote this morphism T ×G×G×G→ Yw by r(η). As for the paths through the
left bottom corner, there is a natural isomorphism between them given by ζ (3.6)
and λh,g (3.7). We identify the two lower paths through this natural isomorphism
and denote it by s(η). We denote the natural isomorphism r(η) → s(η) induced
from the former diagram by α(µ) and the one from the latter diagram by β(η). The
compatibility (3.12) is nothing but α(µ) = β(µ).

For a stack K, we denote by I(K) its inertia stack. An object of I(K) is a pair
(x, α) where x is an object of K and α is an automorphism of x. There is an
equivalence I(K) ' K ×∆,K×K,∆ K. We have the forgetting morphism I(K) → K,
which has the section K → I(K), x 7→ (x, id). If K is a DM stack of �nite type with
�nite diagonal, then I(K) → K is �nite and unrami�ed and K → I(K) is a closed
immersion.

Lemma 3.15. Let Θ,Λ: Wω → I(YG×G×Gw ) be the functors sending an object
(η, µ) of Wω to (r(η), β(µ)−1 ◦ α(µ)) and to (r(η), id) respectively. Consider also

the functor Zω → YG×G×Gw sending (η, µ) to r(η). Then

Zω ×YG×G×Gw
I(YG×G×Gw ) ' Wω ×ΓΘ,Wω×I(YG×G×Gw ),ΓΛ

Wω.

Proof. From 3.13, the right hand side is regarded as the stack of pairs ((η, µ), ε) such
that (η, µ) is an object ofWω and ε is a natural isomorphism Θ((η, µ))→ Λ((η, µ)).
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Thus ε is an isomorphism r(η)→ r(η) making the diagram

r(η)

β(µ)−1◦α(µ)

��

ε // r(η)

id

��
r(η)

ε
// r(η)

commutative. Therefore β(µ)−1 ◦ α(µ) = id, equivalently, the compatibility (3.12)
holds, and ε can be an arbitrary automorphism of r(η). This shows the equivalence
of the lemma. �

Lemma 3.16. The stack Zω is a DM stack of �nite type with a�ne diagonal and
it is separated if all the Y∗ are separated. Moreover, for functions v, w : N→ N and
ωu ∈ R(u, v(u), w(u)), u ∈ N, the morphism Zωu → Zωu+1 is �nite and universally

injective.

Proof. If U , V andW are DM stacks of �nite type with a�ne (resp. �nite) diagonals,
then so is U ×W V. Indeed, U × V is a DM stack of �nite type with a�ne (resp.
�nite) diagonal and U ×W V → U × V is an a�ne (resp. �nite) morphism since it
is a base change of the diagonal W → W ×W. Hence U ×W V is a DM stack of
�nite type with a�ne (resp. �nite) diagonal.

From 3.14 and 3.15, Zω ×YG×G×Gw
I(YG×G×Gw ) is a DM stack of �nite type with

a�ne (resp. �nite, provided that all Y∗ are separated) diagonal. Since the section
YG×G×Gw → I(YG×G×Gw ) is a closed immersion, the same conclusion holds for Zω.

From 2.11, we can conclude that the morphism I(YG×G×Gw(u) ) → I(YG×G×Gw(u+1) ) is
�nite and universally injective. From 2.11, 3.14 and 3.15,

Zωu ×YG×G×G
w(u)

I(YG×G×Gw(u) )→ Zωu+1 ×YG×G×G
w(u+1)

I(YG×G×Gw(u+1) )

is �nite and universally injective, and so is the composition

Zωu → Zωu ×YG×G×G
w(u)

I(YG×G×Gw(u) )→ Zωu+1
×YG×G×G

w(u+1)
I(YG×G×Gw(u+1) ).

The morphism Zωu → Zωu+1
factorizes this and hence is �nite and universally

injective. �

If U → V is a map of stacks and V has a�ne diagonal then U ×V U → U × U
is a�ne, because it is the base change of ∆: V → V × V along U × U → V × V.
Therefore the morphism

Zωu →Wωu ×Wωu → (YGu × YGu )× (YGu × YGu )

induced from equivalences in 3.14 and 3.15 is a�ne. Pulling back a direct system
of étale atlases for (YGu × YGu )× (YGu × YGu ) to Zωu , we obtain a system of atlases
as in 3.12, which completes the proof of 3.12 and the one of 3.5.

4. The stack of formal G-torsors

We �x a �eld k and an étale group scheme G over k. In this section we will
introduce and study the stack of formal G-torsors.

De�nition 4.1. We denote by ∆G the category �bered in groupoids over A� /k
whose objects over B are ∆G(B) = BG(B((t))).

Remark 4.2. By construction we have that if k′/k is a �eld extension then ∆G ×k
k′ ' ∆G×kk′ .

Corollary 4.3. The �ber category ∆G is a pre-stack in the fpqc topology.
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Proof. Let D1, D2 ∈ ∆G(B) = BG(B((t))). We must show that

I = Iso∆G
(D1, D2) : A� /B −→ (Sets)

is an fpqc sheaf. By 2.6, HomB((t))(D1, D2) is a sheaf, so that in particular I is
separated. Thus we must show that if B −→ C is an fpqc covering, φ : D1 −→ D2

is a map and φ⊗C((t)) is a G-equivariant morphisms of C((t))-algebras, then φ is
also G-equivariant. But this is obvious since Di is a subset of Di ⊗ C((t)). �

De�nition 4.4. If X is a category �bered in groupoids over Fp then its Frobenius
FX : X −→ X is the functor mapping ξ ∈ X (B) to F ∗B(ξ) ∈ X (B), where FB : B −→
B is the absolute Frobenius. The Frobenius is Fp-linear, natural in X and coincides
with the usual Frobenius if X is a scheme.

A category �bered in groupoid X over Fp is called perfect if the Frobenius
FX : X −→ X is an equivalence.

Example 4.5. As a consequence of 2.13 DM stacks étale over a perfect �eld are
perfect.

We have the following basic property of ∆G, although we will not use it later.

Proposition 4.6. If k is perfect the �ber category ∆G is perfect.

Proof. By 2.13 the functor BG(B((t))) −→ BG(B((t))) induced by the Frobenius
FB : B −→ B is an equivalence: the p-th powers of elements in B((t)) are in the
image of FB : B((t)) −→ B((t)) and therefore the spectrum of this map is integral
and a universal homeomorphism. �

Another example of a perfect object that will be used later is the following:

De�nition 4.7. If X is a functor A� /Fp −→ (Sets) we denote by X∞ the direct

limit of the direct system of Frobenius morphisms X F−−→ X
F−−→ · · · .

Notice that if X is a k-pre-sheaf then X∞ does not necessarily have a k-structure
unless k is perfect.

Proposition 4.8. Let H be a central subgroup of G. Then the equivalence BG×
BH −→ BG×B(G/H) BG of 2.12 induces an equivalence ∆G×∆H −→ ∆G×∆G/H

∆G. If X is a �bered category with a map X −→ ∆G then we have a 2-Cartesian
diagram

X ×∆H ∆G

X ∆G/H

α

pr1

where α is given by X ×∆H −→ ∆G ×∆H = ∆G×H −→ ∆G and the last map is
induced by the multiplication G×H −→ G.

Proof. The �rst claim is clear. For the other we have the following Cartesian
diagrams

X ×∆H ∆G ×∆H ∆G

X ∆G ∆G/H

pr1 pr1

�
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4.1. The group G = Z/pZ in characteristic p. In this section we consider
G = Z/pZ over k = Fp.

Let C be an Fp-algebra. By Artin-Schreier a Z/pZ-torsor over C is of the form
C[X]/(Xp − X − c), where c ∈ C and the action is induced by X 7−→ X + f for
f ∈ Fp.

Lemma 4.9. Let c, d ∈ C. Then

{u ∈ C | up − u+ c = d} IsoZ/pZC ( C[X]
(Xp−X−c) ,

C[X]
(Xp−X−d) )

u (X 7−→ X − u)

is bijective.

Proof. The map in the statement is well de�ned and it induces a morphism

Spec(C[X]/(Xp−X−(d−c))) −→ IsoZ/pZ(C[X]/(Xp−X−c), C[X]/(Xp−X−d)) = I

The group Z/pZ acts on both sides and the map is equivariant. Since both sides
are Z/pZ-torsors it follows that the above map is an isomorphism. �

Notation 4.10. If C is an Fp-algebra, according to 4.9, we identify (BZ/pZ)(C)

with the category whose objects are elements of C and a morphism c
u−−→ d is an

element u ∈ C such that up−u+c = d. Composition is given by the sum, identities
correspond to 0 ∈ C and the inverse of u ∈ C is −u.

In particular we see that if c ∈ (BZ/pZ)(C) then c ' cp.

Lemma 4.11. Any element b ∈ tB[[t]] is of the form up − u for a unique element
u ∈ tB[[t]].

Proof. Let b, u ∈ tB[[t]] and bs, us for s ∈ N their coe�cients, so that b0 = u0 = 0.
We extend the symbol bs, us for s ∈ Q by setting bs = us = 0 if s /∈ N. The equation
up − u = b translates in bs = ups/p − us for all s ∈ N. A simple computation shows
that, given b, the only solution of the system is

us = −
∑
n∈N

bp
n

s/pn

�

Notation 4.12. In what follows we set

S = {n ≥ 1 | p - n}
and A(S) : A� /Fp −→ (Sets) where A(S)(B) is the set of maps b : S −→ B such
that {s ∈ S | bs 6= 0} is �nite.

Given k ∈ N we set

φk : A(S) −→ ∆Z/pZ, φk(b) =
∑
s∈S

bst
−spk ∈ B((t)) = ∆Z/pZ(B)

and ψk : A(S) × B(Z/pZ) −→ ∆Z/pZ, ψk(b, b0) = φk(b) + b0. Let FA(S) be the
Frobenius morphism of A(S) de�ned in 4.4 and let (A(S))∞ be the limit de�ned as
in 4.7. For all b ∈ A(S)(B) and b0 ∈ B there is a natural map

ψk+1 ◦ (FA(S) × idB(Z/pZ))(b, b0)
−φk(b)−−−−−→ ψk(b, b0)

which therefore induces a functor (A(S))∞ × B(Z/pZ) −→ ∆Z/pZ.

Theorem 4.13. The functor (A(S))∞ × B(Z/pZ) −→ ∆Z/pZ is an equivalence of
�bered categories.
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Proof. Essential surjectivity. Let b(t) =
∑
j bjt

j ∈ ∆Z/pZ(B). By 4.11 and the
de�nition of the map in the statement we can assume that bj = 0 for j > 0. Let
k ∈ N be a su�ciently large positive integer such that every j < 0 with bj 6= 0

is written as −j = pk−m(j)s(j) for some m(j) ≥ 0 and s(j) ∈ S. Then bjt
j '

(bjt
j)p

m(j)

= bp
m(j)

j t−p
ks(j) if bj 6= 0. We see therefore that, up to change b with an

isomorphic element, b can be written as ψk(c) for some c ∈ (A(S) × B(Z/pZ))(B).
Faithfulness. Let ([b, k], b0), ([c, k], c0) ∈ (A(S))∞(B)×B(Z/pZ)(B) and u, v : (b, b0) −→

(c, c0) two morphisms in A(S)×B(Z/pZ), that is b = c and up−u = vp−v = c0−b0
with u, v ∈ B. If ψk(u) = ψk(v) then u = v by de�nition of ψk as desired.

Fullness. Let ([b, k], b0), ([c, k′], c0) ∈ (A(S))∞(B)×B(Z/pZ)(B) and let u : ψk(b, b0) −→
ψk′(c, c0) be a map in ∆Z/pZ. We want to lift this morphism to (A(S))∞×B(Z/pZ).
We can assume k = k′. The element u =

∑
q uqt

q ∈ B((t)) can be written as
u = u− + u+, where u− =

∑
q<0 uqt

q and u+ =
∑
q≥0 uqt

q. In particular we
obtain that up− − u− = φk(c) − φk(b) and up+ − u+ = c0 − b0. By 4.11 it follows
that u+ ∈ B. It su�ces to show that u− = 0. To see this, we �rst show that
c − b is nilpotent. We have φk(c) ' φk(b) and, applying FB to both side we get
φ0(b) ' φ0(b)p

k

= F kB(φk(b)) ' F kB(φk(c)) = φ0(c)p
k ' φ0(c). Thus there exists

v =
∑
q<0 vqt

q ∈ B((t)) such that

φ0(c)− φ0(b) =
∑
s∈S

(cs − bs)t−s = vp − v =
∑
q<0

(vpq/p − vq)t
q

where we set vl = 0 if l ∈ Q − Z<0. In particular for s ∈ S and l ∈ N we obtain
bs − cs = v−s and v−spl = vp

l

−s. Since v−spl = 0 for l � 0 we see that bs − cs is
nilpotent. This means that there exists j > 0 such that F jA(S)(b) = F jA(S)(c). Thus,
up to replace k by k+ j, we can assume b = c, so that up− = u−. If u− =

∑
q<0 uqt

q

and we put uq = 0 for q /∈ Z then we have uq = (uq/pl)
pl for every q ∈ Q with q < 0

and l ∈ N. For each q, taking a su�ciently large l with q/pl /∈ Z, we see uq = 0 as
desired. �

Remark 4.14. The addition Z/pZ × Z/pZ −→ Z/pZ induces maps B(Z/pZ) ×
B(Z/pZ) −→ B(Z/pZ) and ∆Z/pZ × ∆Z/pZ −→ ∆Z/pZ. The ind-scheme (A(S))∞

also has a natural group structure by addition. Notice that the functor in the last
theorem preserves the induced �group structure� on both sides. This is because the
maps ψk preserve the sum and the Frobenius of A(S) is a group homomorphism.
In particular the induced map from (A(S))∞ to the coarse ind-algebraic space of
∆Z/pZ is an isomorphism of sheaves of groups.

Remark 4.15. If B is an Fp-algebra, G is any constant p-group and H is a central
subgroup consisting of elements of order at most p then any map SpecB −→ ∆G/H

lifts to a map SpecB −→ ∆G. More generally any G/H-torsor over B extends
to a G-torsor. This follows from the fact that there is an exact sequence of sets
H1(B,G) −→ H1(B,G/H) −→ H2(B,H) = 0. The last vanishing follows because
H ' (Z/pZ)r for some r and using the Artin-Schreier sequence.

Corollary 4.16. If G is an étale p-group scheme over a �eld k then ∆G is a stack
in the fpqc topology.

Proof. If B is a k-algebra and A/k is a �nite k-algebra then (B ⊗k A)((t)) '
B((t)) ⊗k A by 2.4. Therefore ∆G satis�es descent along coverings of the form
B −→ B ⊗k A. This implies that it is enough to show that ∆G ×k L ' ∆G×kL is a
stack, where L/k is a �nite �eld extension such that G×kL is constant. Again using
base change, we can assume k = Fp andG a constant p-group. If ]G = pl we proceed
by induction on l. If l = 1 then ∆Z/pZ ' (A(S))∞ ×B(Z/pZ) which is a product of
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stacks. For a general G let H a non-trivial central subgroup. By induction ∆G/H

is a stack and it is enough to show that all base change of ∆G −→ ∆G/H along a
map SpecB −→ ∆G/H is a stack. This �ber product is SpecB×∆H thanks to 4.8
and 4.15, which is a stack by inductive hypothesis. �

4.2. Tame cyclic case. Let k be a �eld and n ∈ N such that n ∈ k∗. The aim of
this section is to prove Theorem B.

Set G = µn, the group of n-th roots of unity, which is a �nite and étale group
scheme over k. In particular ∆G(B) can be seen as the category of pairs (L, σ) where
L is an invertible sheaf over B((t)) and σ : L⊗n −→ B((t)) is an isomorphism. When
L = B((t)) the isomorphism σ will often be thought of as an element σ ∈ B((t))∗.

Lemma 4.17. An invertible sheaf L over B((t)) with L⊗n ' B((t)) is the pullback
of an invertible sheaf over SpecB. More precisely , the n-torsion part of Pic(B((t)))
is naturally isomorphic to the one of Pic(B).

Proof. Gabber's formula [B�19, (1.2.2)] says

Pic(B((t))) ' Pic(B[t−1])⊕H1
ét(B,Z).

This is proved in a slightly more general form in Theorem 3.1.7 of the cited paper
by Bouthier-�esnavi£ius. Let N Pic(B) denote the kernel of Pic(B[t])→ Pic(B) so
that

Pic(B[t−1]) ' Pic(B[t]) = Pic(B)⊕N Pic(B).

According to [Swa80, Th. 6.1], N Pic(B) has no n-torsion if and only if Bred is n-
seminormal. The n-seminormality is de�ned as follows. For a reduced ring A, there
exists an extension A ⊂ A called the seminormalization (see [Swa80, Section 4]).
For our purpose, we only need to know its existence. We say that A is n-seminormal
if every element x ∈ A with x2, x3, nx ∈ A belongs to A. In our situation, since n
is invertible in k, every k-algebra is n-seminormal. Thus Bred is n-seminormal and
N Pic(B) has no n-torsion.

It remains to show that H1
ét(B,Z) has no n-torsion. To do so, we consider the

exact sequence

0 −→ Z ×n−−→ Z −→ Z/nZ −→ 0

of constant étale sheaves on the small étale site of SpecB. Taking cohomology
groups, we get the following exact sequence:

H0(B,Z) −→ H0(B,Z/nZ) −→ (the n-torsion part of H1
ét(B,Z)) −→ 0

The left map is surjective, since every locally constant function SpecB −→ Z/nZ
lifts to a locally constant function SpecB −→ Z. It follows that H1

ét(B,Z) has no
n-torsion. �

Lemma 4.18. For a k-algebra B, we have

µn(B) = {b ∈ B∗ | bn = 1} = {b ∈ B((t))∗ | bn = 1} = µn(B((t))).

Proof. Let L and R denote the left and right sides respectively. Obviously L ⊂
R. It is also easy to see R ∩ B[[t]] = L. Thus it su�ces to show that R ⊂
B[[t]]. Conversely, we suppose that it was not the case. We de�ne the naive order
ordnaive(a) of a =

∑
i∈Z ait

i ∈ B[[t]] as min{i | ai 6= 0}. Elements outside B[[t]]

have negative naive orders and choose an element c =
∑
i∈Z cit

i ∈ R \ B[[t]] such
that ordnaive(c) attains the maximum, say i0 < 0. Taking derivatives of cn = 1, we
get ncc′ = 0 with c′ the derivative of c. Since nc is invertible, c′ = 0. If char k = 0
it immediately follows that c ∈ B. So assume char k = p > 0. In this case ci = 0
for all i with p - i. This means that c is in the image of the injective B-algebra
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homomorphism f : B[[t]]→ B[[t]], t 7→ tp. Let d be the unique preimage of c under
f , which is explicitly given by d =

∑
i∈Z cpit

i. In particular,

ordnaive(d) = ordnaive(c)/p > ordnaive(c).

Since f(dn) = cn = 1 and f is injective, we have dn = 1 and d ∈ R \ B[[t]]. This
contradicts the way of choosing c. We have proved the lemma. �

Proof of Theorem B. We �rst de�ne the functor ψ :
⊔n−1
q=0 B(G) −→ ∆G. An object

of
⊔n−1
q=0 B(G) over a k-algebra A is a factorization A =

∏
q Aq plus a tuple (Lq, ξq)q

where Lq is an Aq-module and ξq : L⊗nq −→ Aq is an isomorphism. A morphism
(A =

∏
q Aq, Lq, ξq) −→ (A =

∏
q A
′
q, L
′
q, ξ
′
q) exists if and only if Aq ' Aq′ as

A-algebras (so that such isomorphism is unique) and in this case is a collection of
isomorphisms Lq −→ L′q compatible with the maps ξq and ξ′q. To such an object
we associate the invertible A((t)) =

∏
q Aq((t))-module L =

∏
q(Lq ⊗Aq Aq((t)))

together with the map

L⊗n '
∏
q

(L⊗nq ⊗Aq Aq((t))) −→
∏
q

Aq((t)) = A((t)), (xq ⊗ 1)q 7→ (ξq(xq)t
q)q

It is easy to see that the functor ψ on BG in the index q is the one in the statement.
We are going to show that ψ is an equivalence. Since ∆G is a prestack by 4.3, it will
be enough to show that ψ is an epimorphism and that it is fully faithful. Indeed this
would imply that ∆G is also a stack for the following reason. Given a descent datum
for ∆G, since ∆G is a prestack, in order to show that it is e�ective we can re�ne
this datum, that is re�ne the covering over which is de�ned. If ψ is fully faithful
and an epimorphism, it follows that we can always assume that the descent datum
for ∆G comes from a descent datum for

⊔n−1
q=0 B(G), which is therefore e�ective.

ψ epimorphism. Let χ ∈ ∆G(B). From 4.17, we can assume that the associated
invertible sheaf is trivial and χ = (B((t)), b). We have (B((t)), b) ' (B((t)), b′) if
and only if there exists u ∈ B((t))∗ such that unb = b′. For c ∈ B((t))∗ we de�ne
ord c : SpecB → Z as follows: if x ∈ SpecB is a point with the residue �eld κ and
cx ∈ κ((t)) is the induced power series, then (ord c)(x) := ord cx. This function is
upper semicontinuous. From the additivity of orders, ord b + ord(b−1) is constant
zero. Since ord b and ord(b−1) are both upper semicontinuous, they are in fact
locally constant. Thus we may suppose that ord b is constant, equivalently that if
bj are coe�cients of b, then for some i, bi is a unit and bj are nilpotents for j < i.

Thus we can write b = b−+ tib+ with bt ∈ B[[t]]∗ and b− ∈ B((t)) nilpotent. Set
ω = b/(tib+) ∈ B((t)), A = B((t))[Y ]/(Y n − ω) and C = B((t))/(b−). We have
that ω = 1 in C and therefore that A ⊗B((t)) C has a section. Since A/B((t)) is
étale and B((t)) −→ C is surjective with nilpotent kernel the section extends, that
is ω is an n-th power. Thus we can assume b− = 0. Since B[[t]][Y ]/(Y n − b+) is
étale over B[[t]], by 2.3 we can assume there exists b̂ ∈ B[[t]]∗ such that b̂n = b+.
In conclusion we reduce to the case b = ti and, multiplying by a power of tn, we
can �nally assume 0 ≤ i < n.
ψ fully faithful. If (L, σ) ∈ ∆G(B) then, by Lemma 4.18, its automorphisms

are canonically isomorphic to µn(B((t))) = µn(B). This easily implies that the
restriction of ψ on each component is fully faithful. Given two objects α, β ∈⊔n−1
q=0 B(G) and an isomorphism ψ(α) −→ ψ(β) of their images the problem of

�nding an isomorphism α −→ β inducing the given one is local and easily reducible
to the following claim: if (B((t)), tq) ' (B((t)), tq

′
) then q ≡ q′ mod n. But

the �rst condition means that there exists u ∈ L((t))∗ such that untq = tq
′
and,

applying ord, we get the result. �
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4.3. General p-groups. In this section we consider the case of a constant p-group
G over a �eld k of characteristic p and the aim is to prove Theorem A in this
case. We setup the following notation for this section. All groups considered in this
section are constant.

De�nition 4.19. We set
S = {n ≥ 1 | p - n}

and, given a �nite dimensional Fp-vector space H (regarded as an abelian p-group),
we de�ne a sheaf of abelian groups

XH = (A(S))∞ ⊗Fp H : A� /Fp −→ (Abelian groups)

(that is XH = [(A(S))∞]n if dimFp H = n after the choice of a basis of H). We also
de�ne sheaves of abelian groups XH,m = A(Sm) ⊗Fp H for m ∈ N with Sm = {n ∈
S | n ≤ m}. We �nally de�ne ∆H,m = XH,m × B(H).

Lemma 4.20. 1) We have an isomorphism XH × BH −→ ∆H .
2) We have XH = lim−→m

XH,m as sheaves of abelian groups, where the transi-

tion map XH,m −→ XH,m+1 is the composition of the inclusion A(Sm) ⊗Fp
H −→ A(Sm+1) ⊗Fp H and the Frobenius of A(Sm+1) ⊗Fp H.

3) We have an equivalence lim−→m
(∆H,m) ' ∆H .

Proof. The last two assertions are obvious. We prove the �rst one. If H is the cyclic
group of order p, then this is just 4.13. Otherwise we take a subgroup 1 6= I ( H.
Since the quotient map H → H/I has a section, the morphism ∆H → ∆H/I also
has a section. From 4.8, we have ∆H ' ∆H/I × ∆I . The assertion follows from
induction on the order of H. �

In the following proposition, we use rigidi�cation, an operation introduced in
[AOV08] for algebraic stacks. Roughly speaking, it kills some subgroups of stabi-
lizers. Generalization to non-algebraic stacks will be treated in Appendix B. Note
that from 4.16, ∆G is a stack for a p-group G.

Lemma 4.21. Let H be a �nite dimensional Fp-vector space. We have ∆H(((H '
XH .

Proof. By 4.20 we have ∆H ' XH × BH. Since H is abelian the result follows
from B.4. �

Proposition 4.22. Let G be a p-group and H be a central subgroup which is an Fp-
vector space. Then H is naturally a subgroup sheaf of the inertia stack of ∆G (see
Appendix B for the inertia stack as a group sheaf) and the quotient map ∆G −→
∆G/H is the composition of the rigidi�cation ∆G −→ ∆G((( H and an XH-torsor
∆G(((H −→ ∆G/H , where the action of XH on ∆G(((H is induced by ∆G×∆H −→ ∆G

and rigidi�cation.

Proof. The subgroup H acts on any G-torsor because its central. Moreover the
functor ∆G −→ ∆G/H sends isomorphisms coming from H to the identity and
therefore factors through the rigidi�cation ∆G((( H by B.3, 2). Rigidifying both
sides of ∆G ×∆H −→ ∆G we get a map (∆G(((H)×XH −→ ∆G(((H over ∆G/H .
Using 4.8 and B.3, 3) we can deduce that ∆G(((H −→ ∆G/H is an XH -torsor. �

Lemma 4.23. Let G be a p-group and H be a central subgroup which is an Fp-
vector space. Let also Y∗ be a direct system of quasi-separated stacks over N
with a direct system of smooth (étale) atlases U∗ made of quasi-compact schemes,
lim−→n

Yn −→ ∆G/H a map and lim−→n
Un −→ ∆G a lifting. Then there exists a strictly

increasing map q : N −→ N, a direct system of quasi-separated stacks Z∗ with a di-
rect system of smooth (étale) atlases U∗ ×XH,q∗ (where the transition morphisms
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Ui×XH,qi −→ Ui+1×XH,qi+1
is the product of the given map Ui −→ Ui+1 and the

map XH,qi −→ XH,qi+1
of 4.20), compatible maps Zi −→ Yi induced by the projec-

tion Ui ×XH,qi −→ Ui and which are a composition of an H-gerbe Zi −→ Zi(((H
and a XH,qi-torsor Zi(((H −→ Yi and an equivalence

lim−→
n

Zn ' (lim−→
n

Yn)×∆G/H
∆G

Moreover there is a factorization Ui ×XH,qi −→ Ui ×Yi Zi −→ Zi where the �rst
arrow is an H-torsor.

Proof. Consider one index i ∈ N and the Cartesian diagrams

P ′U,i P ′i ∆G

PU,i Pi ∆G(((H

Ui Yi ∆G/H

Set also Ri = Ui×YiUi, which is a quasi-compact algebraic space. By 4.22 Pi −→ Yi
is a XH -torsor, P ′i −→ Pi an H-gerbe. Moreover the lifting Ui −→ ∆G gives an
isomorphism P ′U,i ' Ui × ∆H and PU,i ' Ui × XH by 4.8. Thus the XH -torsor
Pi −→ Yi, by descent along Ui −→ Yi is completely determined by the identi�cation
Ri × XH 'Ri Ri × XH , which consists of an element ωi ∈ XH(Ri) satisfying the
cocycle condition on Ui ×Yi Ui ×Yi Ui. The given equivalence Pi ' (Pi+1)|Yi of
XH -torsors over Yi is completely determined by its pullback on Ui, which is given
by multiplication by γi ∈ XH(Ui). The compatibility this element has to satisfy is
expressed by

(ωi+1)|Ri(s
∗
i γi) = (t∗i γi)ωi in XH(Ri)

where si, ti : Ri −→ Ui are the two projections. Since all Ri are quasi-compact and
XH ' lim−→j

XH,j we can �nd an increasing sequence of natural numbers q : N −→ N
and elements eqi ∈ XH,qi(Ri), fqi ∈ XH,qi+1

(Ui) such that:
1) the element eqi is mapped to ωi under the map XH,qi(Ri) −→ XH(Ri) and

it satis�es the cocycle condition in XH,qi(Ui ×Yi Ui ×Yi Ui);
2) the element fqi is mapped to γi under the map XH,qi+1(Ui) −→ XH(Ui)

and, if eqi is the image of eqi under the map XH,qi(Ri) −→ XH,qi+1(Ri), it
satis�es

(eqi+1)|Ri(s
∗
i fqi) = (t∗i fqi)eqi in XH,qi+1(Ri)

The data of 1) determine XH,qi-torsors Qi −→ Yi with a map Ui −→ Qi over Yi
and together with an XH,qi-equivariant map Qi −→ Pi such that Ui −→ Qi −→ Pi
is the given map. The data of 2) determine an XH,qi-equivariant map Qi −→
(Qi+1)|Yi inducing the equivalence Pi ' (Pi+1)|Yi .

Consider also the H-gerbe Q′i −→ Qi pullback of P ′i −→ Pi along Qi −→ Pi.
We set Zi = Q′i. We have Cartesian diagrams

Q′i P ′i P ′i+1 Q′i Q′i+1 P ′i+1

Qi Pi Pi+1 Qi Qi+1 Pi+1

Notice that, ifM is a stack over Yi, thenM×Yi+1
Ui+1 'M×Yi Ui because U∗ is

a direct system of atlases. Pulling back along Ui+1 −→ Yi+1 the above diagrams,
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we obtain the bottom rows of the following diagrams.

XH,qi × Ui XH × Ui XH × Ui+1

Q′i ×Yi+1 Ui+1 ∆H × Ui ∆H × Ui+1

XH,qi × Ui XH × Ui XH × Ui+1

XH,qi × Ui XH,qi+1 × Ui+1 XH × Ui+1

Q′i ×Yi+1
Ui+1 Q′i+1 ×Yi+1

Ui+1 ∆H × Ui+1

XH,qi × Ui XH,qi+1
× Ui+1 XH × Ui+1

αi+1αi

βi+1

βi

βi αi+1

The top rows of the above diagrams is instead obtained using 4.8, where the
map αi are induced by the map XH −→ XH × BH = ∆H and the βi are induced

by the αi. Since Q′i ×Yi+1
Ui+1 ' Q′i ×Yi Ui we see that the atlases Ui ×XH,qi

βi−−→
Q′i ×Yi Ui −→ Q′i = Zi de�ne a direct system of smooth (resp. étale) atlases
satisfying the requests of the statement.

Let us show the last equivalence in the statement. By A.3 the map

lim−→
n

(Un ×Yn Pn) = lim−→
n

(Un ×XH) −→ lim−→
n

Pn

is a smooth atlas. The map lim−→n
Qn −→ lim−→n

Pn is therefore an equivalence because
its base change along the above atlas is lim−→n

(Un×XH,qn) −→ lim−→n
(Un×XH), which

is an isomorphism. Here we have used A.2. Using again this we see that the map

lim−→
n

Zn = lim−→
n

(Qn ×Pn P ′n) −→ lim−→
n

P ′n = lim−→
n

(Yn ×∆G/H
∆G)

is an equivalence as well. �

Lemma 4.24. Let G be a p-group, H be a central subgroup which is an Fp-vector
space and X −→ Y be a �nite, �nitely presented and universally injective map of
a�ne schemes. Then a 2-commutative diagram

X ∆G

Y ∆G/H

always admits a dashed map.

Proof. Set X = SpecB and Y = SpecC and consider the induced map C −→ B.
Since H2(B((t)), H) = H2(C((t)), H) = 0 by the Artin-Schreier sequence, we have
a commutative diagram

H1(C((t)), H) H1(C((t)), G) H1(C((t)), G/H) 0

H1(B((t)), H) H1(B((t)), G) H1(B((t)), G/H) 0

α
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with exact rows. By hypothesis there are u ∈ H1(B((t)), G) and v ∈ H1(C((t)), G/H)
which agree in H1(B((t)), G/H). We can �nd a common lifting in H1(C((t)), G)
by proving that the map α is surjective. By 2.4 we have that SpecB((t)) −→
SpecC((t)) is the base change of SpecB −→ SpecC and therefore is �nite and uni-
versally injective. LetD be the image of C((t)) −→ B((t)). The map H1(C((t)), H) −→
H1(D,H) is surjective because H ' (Z/pZ)l for some l and using the description of
Z/pZ-torsors in 4.10. By 2.9 the map SpecB((t)) −→ SpecD is a �nite universal
homeomorphism. Thus H1(D,H) −→ H1(B((t)), H) is bijective by 2.13. �

Proof of Theorem A, 2) and 3). Since p-groups have non trivial center we can �nd
a sequence of quotients

G = Gl −→ Gl−1 −→ Gl−2 −→ · · · −→ G0 −→ G−1 = 0

where Ker(Gu −→ Gu−1) is central in Gu and an Fp-vector space. We proceed
by induction on l. In the base case l = 0, so that G = G0 is an Fp-vector space,
following 4.20 it is enough to set Xn = XG,n × BG. Consider now the inductive
step and set H = Ker(G = Gl −→ Gl−1). Of course we can assume H 6= 0,
so that we can use the inductive hypothesis on G/H, obtaining a direct system
Y∗ and a map v : N −→ N with a direct system of atlases Av∗ . The �rst result
follows applying 4.23 with Un = Avn . We just have to prove the existence of a
lifting lim−→n

Un −→ ∆G. Since the schemes Un are a�ne one always �nd a lifting
Un −→ ∆G thanks to 4.15. Thanks to 4.24 any lifting Un −→ ∆G always extends
to a lifting Un+1 −→ ∆G.

Assume now G abelian and set XG = XG/H ×XH . By induction we can assume
∆G/H = XG/H × B(G/H). By 4.15 and 4.24 there is a lifting XG/H −→ ∆G

of the given map XG/H −→ ∆G/H . In particular, using 4.8, we obtain a map
XG = XG/H × XH −→ XG/H × ∆H −→ ∆G, which is �nite and étale of degree
]G. Since G is abelian and using 2.5 we have (Aut∆G

P )(B) = G(B((t))) = G(B)
for all P ∈ ∆G(B). By B.5, it follows that the rigidi�cation F = ∆G((( G is the
sheaf of isomorphism classes of ∆G and that ∆G −→ F is a gerbe locally BG.
Since XG −→ ∆G and, thanks to A.3, Av = lim−→n

Avn −→ ∆G are �nite and
étale of degree ]G, by 2.14 we can conclude that XG −→ F and Av −→ F are
isomorphisms. Since a gerbe having a section is trivial we get our result. �

With notation and hypothesis from Theorem A set Av = lim−→Av∗ , ∆G for the
coarse ind-algebraic space of ∆G and consider the induced map Av −→ ∆G. We
want to show that when G is non-abelian this map is not an isomorphism in general.
The key point is the following Lemma.

Lemma 4.25. If K is an algebraically closed �eld and P ∈ ∆G(K) then H =
Aut∆G

(P ) is (non canonically) a subgroup of G and the �ber of Av(K) −→ ∆G(K) '
∆G(K)/ ' over P has cardinality ]G/]H.

Proof. There exist n ∈ N and Pn ∈ Xn(K) inducing P ∈ ∆G(K). By 3.2 we have
AutXn(Pn) = H and, since Xn is a quasi-separated DM stack, it follows that H is
a �nite and constant group scheme. Moreover the map

H(K) = AutGK((t))(P ) −→ AutG
K((t))

(P ×K((t))) ' G
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is injective (the last isomorphism depends on the choice of a section in P (K((t))).
Thanks to A.3 we have 2-Cartesian diagrams

Y W V Avn Av

SpecK BH U Xn ∆G

SpecK Xn

If F ⊆ Av(K) is the �ber we are looking for then we get an induced map V (K) −→
F which is easily seen to be surjective. From 3.2 it follows that Avn(K) −→ Av(K)
is injective, which implies that V (K) −→ F is bijective. From [Sta17, 06ML] one
get that BH is the reduction of U . Thus W (K) = V (K). Notice that, since Xn
has schematically representable diagonal, V , W and Y are all schemes. Since the
vertical maps in the top row are �nite and étale of degree ]G and Y −→ W is an
H-torsor we conclude that ]Y = G and ]W = ]Y/]H as required. �

We see that if G is not abelian and P is a Galois extension of K((t)) with group
G, whereK is an algebraically closed �eld, then the map Av −→ ∆G is not injective.
Indeed the �ber of Av(K) −→ ∆G(K) over P has cardinality ]G/]Z(G) because
AutGK((t))(P ) = Z(G).

Remark 4.26. The moduli functor F ′ described in [Har80, Proof of 2.1] is very
similar to the sheaf of isomorphism classes of ∆G but with some di�erences. Firstly
F ′ maps pointed connected a�ne schemes to sets, while we look at the category
of all (non-pointed) a�ne schemes, which is standard in modern moduli theory.
Secondly, for a connected and pointed a�ne scheme SpecB, he de�nes F ′(SpecB)
as the set of equivalence classes of pointed G-torsors on B ⊗k k((t)) rather than
B((t)) as in our case. Two covers are de�ned to be equivalent if they agree after
a �nite étale pullback of B ⊗k k[[t]]. This equivalence relation plays the role of
�killing terms of positive degrees�, while the same role is played by 4.11 in our
setting. This is better understood in the case G = Z/pZ where one can show that
F ′ is exactly the sheaf ∆ of isomorphism classes of ∆Z/pZ (one can ignore base
points here because Z/pZ is abelian).

A map α : F ′ −→ ∆ is well de�ned because if two torsors P,Q over B ⊗ k((t))
become isomorphic after an étale cover of B ⊗ k[[t]], by 2.3 P ×B((t)), Q×B((t))
become isomorphic over C((t)), where C/B is an étale covering. The surjectivity
of α is easy: from the description of ∆Z/pZ a torsor in ∆(B) is given by an element
b ∈ B((t)) with zero positive part and, therefore, belonging to B ⊗ k((t)) ⊆ B((t))
(see also 2.4). For the injectivity take e ∈ B⊗k((t)) de�ning a torsor over B⊗k((t))
which become trivial in ∆(B). Write e = e− + e+ as usual. Since e+ ∈ B ⊗ k[[t]]
(which means that its associated torsor extends to B ⊗ k[[t]]) one has e = e− in
F ′(B). Using the same notation and strategy of 4.13, in particular of the essential
surjectivity, one can assume e = φk(b) for b ∈ A(S). Since e = 0 in ∆ = (A(S))∞

it follows that the coe�cients of b and e are nilpotent. Since ep = e in F ′(B) it
follows that e = 0 in F ′(B).

4.4. Semidirect products. The aim of this section is to complete the proof of
Theorem A. So let k be a �eld of positive characteristic p and G be a �nite and
étale group scheme over k such that G ×k k is a semidirect product of a p-group
and cyclic group of rank coprime with p.

Extending the base �eld by a Galois extension and using 4.2 and 3.5 we can
assume that G is constant, say G = HoCn where H is a p-group and Cn is a cyclic

http://stacks.math.columbia.edu/tag/06ML
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group of order n coprime with p. We can moreover assume that the base �eld k has
all n-roots of unity, so that Cn ' µn as group schemes. More precisely we assume
that Cn = µn(k) ⊆ k∗ is the group of n-th roots of unity of k.

Consider Spec k −→ ∆Cn given by (k((t)), tq) as in Theorem B and denote by
ZG,q the �ber product Spec k×∆Cn

∆G, which is the �bered category of pairs (P, δ)
where P ∈ ∆G(B) and δ : P −→ Spec(B((t))[X]/(Xn−tq)) is a G-equivariant map.

Proposition 4.27. Let d = (n, q) and Gd = H o Cn/d < G. Then the functor
ZGd,q/d −→ ZG,q induced by ∆Gd −→ ∆G and ∆Cn/d −→ ∆Cn is an equivalence.

Proof. Set Qn,q = Spec(B((t))[X]/(Xn − tq)). The map X 7−→ X induces a map
Qn/d,q/d −→ Qn,q which is Cn/d-equivariant, that is Qn,q is the Cn-torsor induced
by the Cn/d-torsor Qn/d,q/d. We obtain a quasi-inverse ZG,q −→ ZGd,q/d mapping

P
φ−−→ Qn,q to the �ber product P ×Qn,q Qn/d,q/d −→ Qn/d,q/d. �

Remark 4.28. If (n, q) = 1 we have an isomorphism of B-algebras

B((s)) −→ B((t))[X](Xn − tq)

such that the Cn-action induced on the left is s 7−→ ξβs for ξ ∈ Cn, where β ∈ Z/nZ
is the inverse of q. Indeed write βq = 1 + αn for some α, β ∈ N. We have
(Xβ/tα)n = t in B((t))[X]/(Xn − tq) and isomorphisms

s X Xβ/tα

B((s)) B((t))[X]/(Xn − t) B((t))[X]/(Xn − tq)' '

De�nition 4.29. Given a p-group H and an autoequivalence φ : ∆H −→ ∆H we
de�ne Zφ as the stack of pairs (P, u) where P ∈ ∆H and u : P −→ φ(P ) is an
isomorphism in ∆H .

There are two natural autoequivalences of ∆H : φψ : ∆H −→ ∆H obtained com-
posing by an isomorphism ψ : H −→ H; φξ : ∆H −→ ∆H induced by a n-th root of
unity ξ using the Cartesian diagram

φξ(P ) P

SpecB((t)) SpecB((t))

ξt t

Proposition 4.30. Assume (q, n) = 1 and let ζ ∈ Cn be a primitive n-th root of
unity and ψ : H −→ H be the automorphism image of ζ under Cn −→ Aut(H). Set
ξ = ζβ where β ∈ Z/nZ is the inverse of q and φ = φψ ◦ φξ : ∆H −→ ∆H . Then
ZG,q is an open and closed substack of Zφ.

Proof. Let P ∈ ∆H . We have φ(P ) = φξ(P ) as schemes. Thus an isomor-
phism u : P −→ φ(P ), via φ(P ) = φξ(P ) −→ P , corresponds to an isomorphism
v : P −→ P . The morphism u is over SpecB((t)) if and only if the following diagram
commutes

P P

SpecB((t)) SpecB((t))

ξt t

v
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Finally, by going through the de�nitions, we see that u is H-equivariant if and only
if ψ(h) = vhv−1 in Aut(P ) for all h ∈ H. We identify Zφ with the stack of pairs
(P, v) as above.

Set SB = SpecB((s)) with the Cn-action given by s 7→ λβs for λ ∈ Cn. By
4.28 SB is isomorphic to SpecB((t))[X]/(Xn − tq) and therefore, by construction,
an object (P, δ) ∈ ZG,q(B) is a G-torsor over B((t)) with a G-equivariant map

δ : P −→ SB . In particular P δ−−→ SB is an H-torsor. Set g0 = (1, ζ) ∈ HoCn = G,
so that ψ(h) = g0hg

−1
0 in G. Since δ is G-equivariant it follows that (P, g0) ∈

Zφ. We therefore get a map ZG,q −→ Zφ. This map is fully faithful. Indeed if
(P, δ), (P ′, δ′) ∈ ZG,q(B) the map on isomorphisms is

IsoZG,q ((P, δ), (P
′, δ′)) = IsoGSB (P, P ′)

IsoZφ((P, g0), (P ′, g0)) = {ω ∈ IsoHSB (P, P ′) | g0ω = ωg0}

We are going to show that the substack Zφ of pairs (P, v) where vn = id is the
essential image of ZG,q −→ Zφ. Since gn0 = 1 we have the inclusion ⊆. Now let
(P, v) ∈ Zφ. Since vn = 1 we get the map G = H o Cn −→ Aut(P ) sending
(h, ζm) to hvm, de�ning a G-action on P . By construction the map δ : P −→ SB
is G-equivariant. Since P/H ' SB it remains to show that G acts freely on P . If
p(hvl) = p for some p ∈ P , then δ(ph)ζl = δ(p)ζl = δ(p) and therefore n | l and
vl = 1. Finally ph = p implies h = 1 in H ⊆ Aut(P ) because P is an H-torsor.
Thus G acts on P freely.

We now show that Zφ is open and closed in Zφ. If (P, v) ∈ Zφ(B) we have that
vn ∈ AutHB((t))(P ) because ψ(h) = vhv−1 and ψ has order n. The group scheme
AutHB((t))(P ) −→ SpecB((t)) is �nite and étale, thus the locus W in SpecB((t))

where vn = id is open and closed in SpecB((t)). By 2.5 there is an open and closed
subset W̃ in SpecB inducing W . By construction the base change of Zφ −→ Zφ
along (P, v) : SpecB −→ Zφ is W̃ , which ends the proof. �

Proposition 4.31. If φ : ∆H −→ ∆H is an equivalence then there exists a direct
system of separated DM stacks Z∗ with �nite and universally injective transition
maps, with a direct system of �nite and étale atlases Zn −→ Zn of degree (]H)2

from a�ne schemes and an equivalence lim−→n
Zn ' Zφ.

Proof. Consider a direct system of DM stacks Y∗ as in Theorem A for the p-group
H. Denote by Γφ : ∆H −→ ∆H × ∆H be the graph of φ and by γu,v : Yu −→ Yv
the transition maps. By 3.13 Zφ is the �ber product of Γφ and the diagonal of ∆H .
There exist an increasing function δ : N −→ N and 2-commutative diagrams

Yn Yn+1 ∆H

Yδn Yδn+1 ∆H

φφn φn+1

Similarly Yn −→ Yn × Yn
γn,δn×φn−−−−−−→ Yδn × Yδn and Yn −→ Yn × Yn

γn,δn×γn,δn−−−−−−−−→
Yδn × Yδnapproximate Γφ and the diagonal of ∆H respectively. By A.2 it follows
that the �ber product Zn = Yn×Yδn×Yδn Yn of the two maps form a direct system
of separated DM stacks whose limit is Zφ. By 2.11 the transition maps are �nite
and universally injective. Let Yn −→ Yn be the �nite and étale atlases of degree ]H
given in Theorem A. The induced map Zn = Yn ×Yδn×Yδn Yn −→ Zn is �nite and
étale of degree (]H)2. Since Yδn×Yδn has a�ne diagonal it follows that Zn is a�ne.
Finally, using the usual properties of �ber products and the fact that Yn −→ Yn
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is a direct system of atlases, we see that the maps Zn −→ Zn+1 ×Zn+1
Zn are

isomorphisms. �

Proof of Theorem A, 1). Recall that we have reduced the problem to the case of
a constant group G = H o Cn at the beginning of this subsection 27. Consider
π : ∆G −→ ∆Cn and the decomposition ∆Cn =

⊔n
q=1 BGq, where Gq = Cn, of

Theorem B. The map
n⊔
q=1

(BGq ×∆Cn
∆G) −→ ∆G

is well de�ned and an equivalence because given k-algebras A1 and A2 the map
∆G(A1 × A2) −→ ∆G(A1) × ∆G(A2) is an equivalence. Thus in the statement
of the theorem ∆G can be replaced by Z̃G,q = (BGq ×∆Cn

∆G). We must show
that Z̃G,q is a stack in the fpqc topology if ZG,q is so. Let B be a ring, U =

{B −→ Bi}i∈I a covering and ξ ∈ Z̃G,q(U) be a descent datum. Given a B-scheme
Y we denote by UY = U ×B Y and by ξY ∈ Z̃G,q(UY ) the pullback. Denote by
r : Z̃G,q −→ BCn the structure map. The descent datum r(ξ) yields a Cn-torsor
F −→ SpecB. Let Y −→ SpecB a B-scheme with a factorization Y −→ F . This
factorization is a trivialization of the Cn-torsor over Y and therefore it induces a
descent datum of (Z̃G,q ×BCn Spec k)(UY ) = ZG,q(UY ) which is therefore e�ective,
yielding ηY ∈ ZG,q(Y ) and η̃Y ∈ Z̃G,q(Y ). By construction η̃Y ∈ Z̃G,q(Y ) induces
the descent datum ξY ∈ Z̃G,q(UY ). In particular we get η̃F ∈ Z̃G,q(F ). Since Z̃G,q
is a prestack, the objects η̃F×BF obtained using the two projections F ×B F −→ F

are isomorphic via a given isomorphism: they both induce ξF×BF ∈ Z̃G,q(UF×BF )

which does not depend on the projections being a pullback of ξ ∈ Z̃G,q(U). In
conclusion η̃F gives a descent datum for Z̃G,q over the covering F −→ SpecB. In
order to get a global object in Z̃G,q(B) inducing the given descent datum ξ it is
enough to notice that, by 2.4, ∆G satis�es descent along coverings U −→ SpecB
which are �nite, �at and �nitely presented.

Thanks to 3.5, it is enough to show that ZG,q is a limit as in the statement.
Using 4.27 we can further assume n and q coprime and, using 4.30, we can replace
ZG,q by Zφ, where φ = φψ◦φξ as in 4.30. The conclusion now follows from 4.31. �

Appendix A. Limit of fibered categories

In this appendix we discuss the notion of inductive limit of stacks. To simplify
the exposition and since general colimits were not needed in this paper we will
only talk about limit over the natural numbers N. General results can be found in
[TZ19, Appendix A].

A direct system of categories C∗ (indexed by N) is a collection of categories Cn
for n ∈ N and functors ψn : Cn −→ Cn+1. Given indexes n < m we also set

ψn,m : Cn
ψn−−→ Cn+1 −→ · · · −→ Cm−1

ψm−1−−−−→ Cm
and ψn,n = idCn . The limit lim−→n∈N Cn or C∞ is the category de�ned as follows. Its
objects are pairs (n, x) with n ∈ N and x ∈ Cn. Given pairs (n, x) and (m, y) we
set

HomC∞((n, x), (m,x)) = lim−→
q>n+m

HomCq (ψn,q(x), ψm,q(y))

Composition is de�ned in the obvious way. There are obvious functors Cn −→ C∞.
Given a category D we denote by Hom(C∗,D) the category whose objects are

collections (Fn, αn) where Fn : Cn −→ D are functors and αn : Fn+1 ◦ ψn −→ Fn
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are natural isomorphisms of functors Cn −→ D. There is an obvious functor
Hom(C∞,D) −→ Hom(C∗,D) and we have:

Proposition A.1. [TZ19, Remark A.3] The functor Hom(C∞,D) −→ Hom(C∗,D)
is an equivalence.

This justi�es calling C∞ the limit of the direct system C∗.
Let S be a category with �ber products. A direct system of �bered categories

X∗ over S (indexed by N) is a direct system of categories X∗ together with maps
Xn −→ S making Xn into a �bered category over S and such that the transition
maps Xn −→ Xn+1 are maps of �bered categories. Result [TZ19, Proposition A.4]
translates into what follows.

The induced functor X∞ −→ S makes X∞ into a �bered category over S and
the maps Xn −→ X∞ are map of �bered categories. Given an object s ∈ S there is
an induced direct system of categories X∗(s) and there is a natural equivalence

lim−→
n∈N
Xn(s)

'−−→ X∞(s)

In particular if all the Xn are �bered in sets (resp. groupoids) so is X∞.
If Y is another �bered category over S denotes by HomS(X∗,Y) the subcate-

gory of Hom(X∗,Y) of objects (Fn, αn) where Fn are base preserving functors and
αn are base preserving natural transformations. Also the arrows in the category
HomS(X∗,Y) are required to be base preserving natural transformations. There
is an induced functor HomS(X∞,Y) −→ HomS(X∗,Y) which is an equivalence of
categories.

A direct check using the de�nition of �ber product yields the following.

Proposition A.2. Let X∗,Y∗ and Z∗ be direct system of categories �bered in
groupoids over S and assume they are given 2-commutative diagrams

Xn Xn+1 Zn Zn+1

Yn Yn+1 Yn Yn+1

an+1 bn+1bnan

Then the canonical map

lim−→
n∈N

(Xn ×Yn Zn) −→ lim−→
n∈N
Xn ×lim−→

n∈N
Yn lim−→

n∈N
Zn

is an equivalence.

Corollary A.3. Let X∗ and Y∗ be direct systems of categories �bered in groupoids
over S and assume to have 2-Cartesian diagrams

Yn Yn+1

Xn Xn+1

Then the following diagrams are also 2-Cartesian for all n ∈ N:

Yn lim−→Y∗

Xn lim−→X∗

Proof. We have maps Yn
'−−→ Xn ×Xm Ym −→ Xn ×X∞ Y∞ for all m > n. Passing

to the limit on m we get the result. �
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Lemma A.4. Assume that S has a Grothendieck topology such that for all coverings
V = {Ui −→ U}i∈I there exists a �nite subset J ⊆ I for which VJ = {Uj −→ U}j∈J
is also a covering. Let also Y be a �bered category. Then Y is a stack (resp. pre-
stack) if and only if given a �nite covering U of U ∈ S the functor Y(U) −→ Y(U)
is an equivalence (resp. fully faithful), where Y(U) is the category of descent data
of Y over U .

Proof. The �only if� part is trivial. We show the �if� part. Let V = {Ui −→ U}i∈I
be a general covering and consider a �nite subset J ⊆ I for which VJ = {Ui −→
U}i∈J is also a covering. Thus the composition Y(U) −→ Y(V) −→ Y(VJ) is an
equivalence (resp. fully faithful) and it is enough to show that Y(V) −→ Y(VJ) is
faithful. This follows because there is a 2-commutative diagram

Y(V)

∏
i∈I
Y(Ui)

Y(VJ)

∏
i∈I

(
∏
j∈J
Y(Ui ×U Uj))

a

b

where the functors a and b are faithful. �

Proposition A.5. In the hypothesis of A.4, if X∗ is a direct system of stacks (resp.
pre-stacks) over S then X∞ is also a stack (resp. pre-stack) over S.

Proof. It is easy to prove descent (resp. descent on morphisms) and its uniqueness
along coverings indexed by �nite sets. By A.4 this is enough. �

Clearly the site S we have in mind in the above proposition is a category �bered
in groupoids over the category of a�ne schemes A� with any of the usual topologies,
for instance A� /X, the category of a�ne schemes together with a map to a given
scheme X.

Appendix B. Rigidification revisited

Rigidi�cation is an operation that allows us to �kill� automorphisms of a given
stack by modding out stabilizers by a given subgroup of the inertia. This operation
is described in [AOV08, Appendix A] in the context of algebraic stacks, but one
can easily see that this is a very general construction. In this appendix we discuss
it in its general form so that we can apply it to non-algebraic stacks like ∆G.

Let S be a site, X be a stack in groupoids over S and denote by I(X ) −→ X
the inertia stack. The inertia stack can be also thought as the sheaf X op −→
(Groups) mapping ξ ∈ X (U) to AutX (U)(ξ). By a subgroup sheaf of the inertia
stack we mean a subgroup sheaf of the previous functor. Notice that given a sheaf
F : X op −→ (Sets) and an object ξ ∈ X (U) one get a sheaf Fξ on U by composing

(S/U)op
ξ−−→ X op −→ (Sets), where the �rst arrow comes from the 2-Yoneda lemma.

Concretely one has Fξ(V
g−−→ U) = F (g∗ξ). If f : V −→ U is any map in S there is

a canonical isomorphism Fξ ×U V ' Ff∗ξ.
Notice moreover that a subgroup sheaf H of I(X ) is automatically normal:

if ξ ∈ X (U) and ω ∈ I(X )(ξ) = AutX (U)(ξ) then ω induces the conjugation
I(X )(ξ) −→ I(X )(ξ) and, since H is a subsheaf, the subgroup H(ξ) is preserved by
the conjugation.

We now describe how to rigidify X by any subgroup sheaf H of the inertia.

We de�ne the category X̃(((H as follows. The objects are the same as the ones of

X . Given ξ ∈ X (U) and η ∈ X (V ) an arrow ξ −→ η in X̃(((H is a pair (f, φ)
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where f : U −→ V and φ ∈ (IsoU (f∗η, ξ)/Hξ)(U). Given ζ ∈ X (W ) and arrows

ξ
(f,φ)−−−→ η

(g,ψ)−−−→ ζ we have that (IsoU (f∗g∗ζ, f∗η)/Hf∗η) ' (IsoV (g∗ζ, η)/Hη) ×V
U , because the action of H∗ is free. Moreover composition induces a map

(IsoU (f∗g∗ζ, f∗η)/Hf∗η)× (IsoU (f∗η, ξ)/Hξ) −→ (IsoU (f∗g∗ζ, ξ)/Hξ)

One set (g, ψ) ◦ (f, φ) = (gf, ω) where ω is the image of (f∗ψ, φ) under the above

map. It is elementary to show that this de�nes a category X̃(((H together with

a map X̃(((H −→ S making it into a category �bered in groupoids. The map

X −→ X̃(((H is also a map of �bered categories.

De�nition B.1. The rigidi�cation X(((H of X byH over the site S is a stacki�cation
of the category �bered in groupoids X̃(((H constructed above.

Depending on the chosen foundation and the notion of category used, a stack-
i�cation does not necessarily exists. The usual workaround is to talk about uni-
verses but in our case one can directly construct a stacki�cation X((( H. We de-
note by Z the category constructed as follows. Its objects are pairs (G −→ U,F )
where U ∈ S, G −→ U is a gerbe and F : G −→ X is a map of �bered cat-
egories satisfying the following condition: for all y ∈ G lying over V ∈ S the
map AutG(V )(y) −→ AutX (V )(F (y)) is an isomorphism onto H(F (y)). An arrow
(G′ −→ U ′, F ′) −→ (G −→ U,F ) is a triple (f, ω, δ) where

G′ G

U ′ U

ω

f

is a 2-Cartesian diagram and δ : F ◦ ω −→ F ′ is a base preserving natural isomor-
phism. The class of arrows between two given objects is in a natural way a category
rather than a set. On the other hand, since the maps from the gerbes to X are
faithful by de�nition, this category is equivalent to a set: between two 1-arrows
there exist at most one 2-arrow. In particular Z is a 1-category. It is not di�cult
to show that Z is �bered in groupoids over S and that it satis�es descent, i.e., it is
a stack in groupoids over S.

There is a functor ∆: X −→ Z mapping ξ ∈ X (U) to Fξ : BHξ −→ X × U −→
X . If ψ : ξ′ −→ ξ is an isomorphism in X (U), then ∆(ψ) = (B(cψ), λψ) where
cψ : Hξ′ −→ Hξ is the conjugation by ψ and λψ is the unique natural transforma-

tion Fξ′ −→ Fξ ◦ B(cψ) that evaluated in Hξ′ yields ξ′
ψ−−→ ξ. For the existence

and uniqueness of λψ recall that, by descent, a natural transformation of functors
Q,Q′ from a stack of torsors to a stack, is the same datum of an isomorphism be-
tween the values of Q and Q′ on the trivial torsor which is functorial with respect
to the automorphisms of the trivial torsor. In our case a natural transformation
Fξ′ −→ Fξ ◦B(cψ) is an isomorphism ω : ξ′ −→ ξ (the values of the functors on the
trivial torsor Hξ′) such that cψ(u) = ωuω−1 for all ξ′ u−−→ ξ′ ∈ Hξ′ (that is for all
automorphisms of the trivial torsor).

Given an object z = (G, F ) ∈ Z(U) there is a natural isomorphism making the
following diagram 2-Cartesian:

G X

U Z

F

z

∆
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For this reason we call ∆: X −→ Z the universal gerbe. The key point in proving
this is that if we have a gerbe G over U and a section x ∈ G(U) then the functor

G −→ B(AutG(x)), y 7−→ IsoG(x, y)

is well de�ned and an equivalence. In particular if (G, F ) ∈ Z(U) then AutG(x) '
HF (x) via F .

Proposition B.2. The functor ∆: X −→ Z induces a fully faithful epimorphism

X̃(((H −→ Z. In particular Z is a rigidi�cation X(((H of X by H.

Proof. Given a functor T −→ Z induced by (G −→ T, F ) ∈ Z(T ) then T ×Z X is
the stack of triples (f, ξ, ω) where f : S −→ T , ξ ∈ X (S) and ω is an isomorphism
(BHξ, Fξ) ' (G, F ). Denote by ∆: X −→ Z the functor and let ξ, ξ′ ∈ X (U).
Since X −→ Z is clearly an epimorphism, we have to prove that

IsoU (ξ′, ξ) −→ IsoU (∆(ξ′),∆(ξ))

is invariant by the action of Hξ and an Hξ-torsor. Notice that a functor of the
form BHξ′ −→ BHξ is locally induced by a group homomorphism Hξ′ −→ Hξ.
Thus it is enough to prove that if c : Hξ′ −→ Hξ is an isomorphism of groups
and λ : Fξ′ −→ Fξ ◦ B c is an isomorphism then the set J of φ : ξ′ −→ ξ inducing
(B(c), λ) : ∆(ξ′) −→ ∆(ξ) is non empty and Hξ(U) acts transitively of this set.

The natural transformation λ evaluated on the trivial torsor Hξ′ yields an iso-
morphism φ : ξ′ −→ ξ. The fact that λ is a natural transformation implies that

c = cφ and λ = λφ, that is φ ∈ J . Now let ξ′
ψ−−→ ξ be an isomorphism. A natural

isomorphism B(cψ) −→ B(cφ) is given by h ∈ Hξ(U) (more precisely the multipli-
cation Hξ −→ Hξ by h) such that hcψ(ω) = cφ(ω)h for all ω ∈ Hξ′(U). Such an
h induces a morphism ∆(ψ) −→ ∆(φ) if and only if hψ = φ. Since this condition
implies the previous one we see that J = Hξ(U)φ. �

We denote by BX H the stack of H-torsors over X (thought of as a site). An
object of BX H is by de�nition an object ξ ∈ X (U) together with an H|X/ξ-torsor
over X/ξ. Since X is �bered in groupoids the forgetful functor X/ξ −→ S/U is
an equivalence. Thus an object of BX H is an object ξ ∈ X (U) together with a
Hξ-torsor over U .

Proposition B.3. We have:

1) given ξ, η ∈ X (U) we have IsoU (∆(ξ),∆(η)) ' Iso(ξ, η)/Hη;
2) the functor ∆: X −→ X(((H is universal among maps of stacks F : X −→
Y such that, for all ξ ∈ X (U), Hξ lies in the kernel of AutU (ξ) −→
AutU (F (ξ));

3) if

Y X

R X(((H

b

∆a

is a 2-Cartesian diagram of stacks then for all η ∈ Y(U) the map

Ker(AutU (η) −→ AutU (a(η))) −→ AutU (b(η))

is an isomorphism onto Hb(η), so that b∗H is naturally a subgroup sheaf of
I(Y), and the induced map Y((( b∗H −→ R is an equivalence;

4) there is an isomorphism X ×X(((H X ' BX (H);

5) the map X → X(((H is a relative gerbe (see [Sta17, Tag 06P1]).
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Proof. Point 1) follows from B.2, while point 2) is a direct consequence of the
de�nition of rigidi�cation. Now consider point 3). The kernel in the statement
corresponds to the group of automorphisms of the object η in the �ber product
U ×RY. Using that X −→ X(((H is the universal gerbe we get the the isomorphism
in the statement. In particular there is an epimorphism Y((( b∗H −→ R. This is
fully faithful because, given η, η′ ∈ Y(U), by de�nition of �ber product one get a
Cartesian diagram

IsoU (η′, η) IsoU (b(η′), b(η))

IsoU (a(η′), a(η)) IsoU (b(η′), b(η))/Hb(η)

For point 4), denotes by Y the �ber product in the statement. It is the stack
of triples (ξ, ξ′, φ) where ξ, ξ′ ∈ X (U) and φ ∈ IsoU (ξ′, ξ)/Hξ. The functor Y −→
BX H which maps (ξ, ξ′, φ) to (ξ, Pφ), where Pφ is de�ned by the Cartesian diagram

Pφ IsoU (ξ′, ξ)

U IsoU (ξ′, ξ)/Hξ
φ

is an equivalence. This is because the functor X −→ BX H sending ξ to ξ with
the trivial torsor is an epimorphism and the base change Y ×BX H X −→ X is an
equivalence since Y ×BX HX is the stack of triples (ξ, ξ′, ψ) where ξ, ξ′ ∈ X (U) and
ψ : ξ′ −→ ξ is an isomorphism in X (U).

For point 5), since ∆: X → X((( H is an epimorphism, it has local sections.
Moreover given two objects ξ, η ∈ X (U) and an isomorphism ∆(ξ) → ∆(η), by
point 1), this isomorphism locally comes from an isomorphism ξ → η in X , as
required. �

Proposition B.4. Let X be a stack in groupoid over S and G : Sop → (Ab) be a
sheaf of abelian groups. Then the map

(X × BS G)((( G → X
is an equivalence.

Proof. Let U ∈ S be an object and P ∈ BS G(U) a G-torsor. Since G is commutative
the action of G on P is G-equivariant and therefore the map

G × U → AutBS G(P )

is well de�ned and, checking locally, an isomorphism. This implies that G, more
precisely the restriction (X × BS G)op → Sop → (Ab), is a subgroup of the inertia
stack of (X×BS G), thought of as a sheaf of groups. Since the functor X×BS G → X
kills the automorphisms in G we obtain the map in the statement thanks to B.3,
2). By B.3, 3) we can assume X = S. In order to show that BS G((( G → S is an

equivalence, it is enough to show that the functor ˜BS G((( G → S is fully faithful.
By construction, the objects of the �rst category are torsors P,Q ∈ BS G(U) and
the morphisms are IsoG(P,Q)/G. But this is a sheaf which is locally trivial and
therefore it is trivial. It follows that Iso

B̃S G(((G
(P,Q) consists of just one element. �

Proposition B.5. Let X be a stack in groupoid over S and G : Sop → (Groups)
be a sheaf of groups. Assume there is an isomorphism between the restriction
GX : X op → Sop → (Groups) and the inertia I(X ) : X op → (Groups). Then GX
is a sheaf of abelian groups, X((( G is the sheaf of isomorphism classes of X and
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X → X((( G is a relative gerbe. Moreover for any object U ∈ S and map U → X((( G
the �ber X ×X(((G U → U is locally of the form BU G|U → U .

Proof. Let h ∈ GX (ξ) for ξ ∈ X (U). The naturality of the isomorphism GX (ξ) →
I(X )(ξ) = AutX (U)(ξ) on the morphism h : ξ → ξ exactly implies that the conju-
gation by h on I(X )(ξ) is the identity. Thus GX ' I(X ) is abelian. By B.3, 2) any
map X → F to a sheaf factors through X((( G and by B.3,1) the stack X((( G is a
actually a sheaf. This implies that X((( G is the sheaf of isomorphism classes of X .
It is a gerbe thanks to B.3, 5). For the local form of X → X(((G any map U → X(((G
locally factors through X itself. In this case the �ber is exactly BU G|U → U thanks
to B.3, 4). �
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